Zhang, Yijing
Personalize Your LLM: Fake it then Align it
Zhang, Yijing, Adila, Dyah, Shin, Changho, Sala, Frederic
Personalizing large language models (LLMs) is essential for delivering tailored interactions that improve user experience. Many existing personalization methods require fine-tuning LLMs for each user, rendering them prohibitively expensive for widespread adoption. Although retrieval-based approaches offer a more compute-efficient alternative, they still depend on large, high-quality datasets that are not consistently available for all users. To address this challenge, we propose CHAMELEON, a scalable and efficient personalization approach that uses (1) self-generated personal preference data and (2) representation editing to enable quick and cost-effective personalization. Our experiments on various tasks, including those from the LaMP personalization benchmark, show that CHAMELEON efficiently adapts models to personal preferences, improving instruction-tuned models and outperforms two personalization baselines by an average of 40% across two model architectures.
Is Free Self-Alignment Possible?
Adila, Dyah, Shin, Changho, Zhang, Yijing, Sala, Frederic
Aligning pretrained language models (LMs) is a complex and resource-intensive process, often requiring access to large amounts of ground-truth preference data and substantial compute. Are these costs necessary? That is, it is possible to align using only inherent model knowledge and without additional training? We tackle this challenge with AlignEZ, a novel approach that uses (1) self-generated preference data and (2) representation editing to provide nearly cost-free alignment. During inference, AlignEZ modifies LM representations to reduce undesirable and boost desirable components using subspaces identified via self-generated preference pairs. Our experiments reveal that this nearly cost-free procedure significantly narrows the gap between base pretrained and tuned models by an average of 31.6%, observed across six datasets and three model architectures. Additionally, we explore the potential of using AlignEZ as a means of expediting more expensive alignment procedures. Our experiments show that AlignEZ improves DPO models tuned only using a small subset of ground-truth preference data. Lastly, we study the conditions under which improvement using AlignEZ is feasible, providing valuable insights into its effectiveness.