Goto

Collaborating Authors

 Zhang, Yihe


Regional Weather Variable Predictions by Machine Learning with Near-Surface Observational and Atmospheric Numerical Data

arXiv.org Artificial Intelligence

Accurate and timely regional weather prediction is vital for sectors dependent on weather-related decisions. Traditional prediction methods, based on atmospheric equations, often struggle with coarse temporal resolutions and inaccuracies. This paper presents a novel machine learning (ML) model, called MiMa (short for Micro-Macro), that integrates both near-surface observational data from Kentucky Mesonet stations (collected every five minutes, known as Micro data) and hourly atmospheric numerical outputs (termed as Macro data) for fine-resolution weather forecasting. The MiMa model employs an encoder-decoder transformer structure, with two encoders for processing multivariate data from both datasets and a decoder for forecasting weather variables over short time horizons. Each instance of the MiMa model, called a modelet, predicts the values of a specific weather parameter at an individual Mesonet station. The approach is extended with Re-MiMa modelets, which are designed to predict weather variables at ungauged locations by training on multivariate data from a few representative stations in a region, tagged with their elevations. Re-MiMa (short for Regional-MiMa) can provide highly accurate predictions across an entire region, even in areas without observational stations. Experimental results show that MiMa significantly outperforms current models, with Re-MiMa offering precise short-term forecasts for ungauged locations, marking a significant advancement in weather forecasting accuracy and applicability.


Knowledge Bases in Support of Large Language Models for Processing Web News

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have received considerable interest in wide applications lately. During pre-training via massive datasets, such a model implicitly memorizes the factual knowledge of trained datasets in its hidden parameters. However, knowledge held implicitly in parameters often makes its use by downstream applications ineffective due to the lack of common-sense reasoning. In this article, we introduce a general framework that permits to build knowledge bases with an aid of LLMs, tailored for processing Web news. The framework applies a rule-based News Information Extractor (NewsIE) to news items for extracting their relational tuples, referred to as knowledge bases, which are then graph-convoluted with the implicit knowledge facts of news items obtained by LLMs, for their classification. It involves two lightweight components: 1) NewsIE: for extracting the structural information of every news item, in the form of relational tuples; 2) BERTGraph: for graph convoluting the implicit knowledge facts with relational tuples extracted by NewsIE. We have evaluated our framework under different news-related datasets for news category classification, with promising experimental results.


An Open and Large-Scale Dataset for Multi-Modal Climate Change-aware Crop Yield Predictions

arXiv.org Artificial Intelligence

Precise crop yield predictions are of national importance for ensuring food security and sustainable agricultural practices. While AI-for-science approaches have exhibited promising achievements in solving many scientific problems such as drug discovery, precipitation nowcasting, etc., the development of deep learning models for predicting crop yields is constantly hindered by the lack of an open and large-scale deep learning-ready dataset with multiple modalities to accommodate sufficient information. To remedy this, we introduce the CropNet dataset, the first terabyte-sized, publicly available, and multi-modal dataset specifically targeting climate change-aware crop yield predictions for the contiguous United States (U.S.) continent at the county level. Our CropNet dataset is composed of three modalities of data, i.e., Sentinel-2 Imagery, WRF-HRRR Computed Dataset, and USDA Crop Dataset, for over 2200 U.S. counties spanning 6 years (2017-2022), expected to facilitate researchers in developing versatile deep learning models for timely and precisely predicting crop yields at the county-level, by accounting for the effects of both short-term growing season weather variations and long-term climate change on crop yields. Besides, we develop the CropNet package, offering three types of APIs, for facilitating researchers in downloading the CropNet data on the fly over the time and region of interest, and flexibly building their deep learning models for accurate crop yield predictions. Extensive experiments have been conducted on our CropNet dataset via employing various types of deep learning solutions, with the results validating the general applicability and the efficacy of the CropNet dataset in climate change-aware crop yield predictions.