Goto

Collaborating Authors

 Zhang, Yaoxue


AugFL: Augmenting Federated Learning with Pretrained Models

arXiv.org Artificial Intelligence

--Federated Learning (FL) has garnered widespread interest in recent years. However, owing to strict privacy policies or limited storage capacities of training participants such as IoT devices, its effective deployment is often impeded by the scarcity of training data in practical decentralized learning environments. In this paper, we study enhancing FL with the aid of (large) pre-trained models (PMs), that encapsulate wealthy general/domain-agnostic knowledge, to alleviate the data requirement in conducting FL from scratch. Specifically, we consider a networked FL system formed by a central server and distributed clients. First, we formulate the PM-aided personalized FL as a regularization-based federated meta-learning problem, where clients join forces to learn a meta-model with knowledge transferred from a private PM stored at the server . FL, to optimize the problem with no need to expose the PM or incur additional computational costs to local clients. EDERA TED Learning (FL) [2]-[4] has gained prominence as a distributed learning paradigm allowing a large number of decentralized users to collaboratively train models without sharing their local data, which has garnered significant attention from both academia and industry [5]-[11]. Despite its rapid advancements, the effective deployment of FL has been hampered by a significant hurdle: in practice, the participants, such as IoT devices [12], can provide only scarce training data due to limited storage capacities or strict privacy policies [13], [14]. Therefore, it is often unsatisfactory to carry out FL from scratch in many modern data-hungry applications like natural language processing [15] and robotic control [16]. This work was accepted in part by the 22nd International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing (MobiHoc) [1]. Sheng Y ue is with the School of Cyber Science and Technology, Sun Y at-sen University. Zerui Qin, Y ongheng Deng, Ju Ren (corresponding author), and Y aoxue Zhang are with the Department of Computer Science and Technology, Tsinghua University. Junshan Zhang is with the Department of Electrical and Computer Engineering, University of California, Davis.


LeMo: Enabling LEss Token Involvement for MOre Context Fine-tuning

arXiv.org Artificial Intelligence

The escalating demand for long-context applications has intensified the necessity of extending the LLM context windows. Despite recent fine-tuning approaches successfully expanding context lengths, their high memory footprints, especially for activations, present a critical practical limitation. Current parameter-efficient fine-tuning methods prioritize reducing parameter update overhead over addressing activation memory constraints. Similarly, existing sparsity mechanisms improve computational efficiency but overlook activation memory optimization due to the phenomenon of Shadowy Activation. In this paper, we propose LeMo, the first LLM fine-tuning system that explores and exploits a new token-level sparsity mechanism inherent in long-context scenarios, termed Contextual Token Sparsity. LeMo minimizes redundant token involvement by assessing the informativeness of token embeddings while preserving model accuracy. Specifically, LeMo introduces three key techniques: (1) Token Elimination, dynamically identifying and excluding redundant tokens across varying inputs and layers. (2) Pattern Prediction, utilizing well-trained predictors to approximate token sparsity patterns with minimal overhead. (3) Kernel Optimization, employing permutation-free and segment-based strategies to boost system performance. We implement LeMo as an end-to-end fine-tuning system compatible with various LLM architectures and other optimization techniques. Comprehensive evaluations demonstrate that LeMo reduces memory consumption by up to 1.93x and achieves up to 1.36x speedups, outperforming state-of-the-art fine-tuning systems.


Ripple: Accelerating LLM Inference on Smartphones with Correlation-Aware Neuron Management

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have achieved remarkable success across various domains, yet deploying them on mobile devices remains an arduous challenge due to their extensive computational and memory demands. While lightweight LLMs have been developed to fit mobile environments, they suffer from degraded model accuracy. In contrast, sparsity-based techniques minimize DRAM usage by selectively transferring only relevant neurons to DRAM while retaining the full model in external storage, such as flash. However, such approaches are critically limited by numerous I/O operations, particularly on smartphones with severe IOPS constraints. In this paper, we propose Ripple, a novel approach that accelerates LLM inference on smartphones by optimizing neuron placement in flash memory. Ripple leverages the concept of Neuron Co-Activation, where neurons frequently activated together are linked to facilitate continuous read access and optimize data transfer efficiency. Our approach incorporates a two-stage solution: an offline stage that reorganizes neuron placement based on co-activation patterns, and an online stage that employs tailored data access and caching strategies to align well with hardware characteristics. Evaluations conducted on a variety of smartphones and LLMs demonstrate that Ripple achieves up to 5.93x improvements in I/O latency compared to the state-of-the-art. As the first solution to optimize storage placement under sparsity, Ripple explores a new optimization space at the intersection of sparsity-driven algorithm and storage-level system co-design in LLM inference.


OLLIE: Imitation Learning from Offline Pretraining to Online Finetuning

arXiv.org Artificial Intelligence

In this paper, we study offline-to-online Imitation Learning (IL) that pretrains an imitation policy from static demonstration data, followed by fast finetuning with minimal environmental interaction. We find the na\"ive combination of existing offline IL and online IL methods tends to behave poorly in this context, because the initial discriminator (often used in online IL) operates randomly and discordantly against the policy initialization, leading to misguided policy optimization and $\textit{unlearning}$ of pretraining knowledge. To overcome this challenge, we propose a principled offline-to-online IL method, named $\texttt{OLLIE}$, that simultaneously learns a near-expert policy initialization along with an $\textit{aligned discriminator initialization}$, which can be seamlessly integrated into online IL, achieving smooth and fast finetuning. Empirically, $\texttt{OLLIE}$ consistently and significantly outperforms the baseline methods in $\textbf{20}$ challenging tasks, from continuous control to vision-based domains, in terms of performance, demonstration efficiency, and convergence speed. This work may serve as a foundation for further exploration of pretraining and finetuning in the context of IL.


How to Leverage Diverse Demonstrations in Offline Imitation Learning

arXiv.org Artificial Intelligence

Offline Imitation Learning (IL) with imperfect demonstrations has garnered increasing attention owing to the scarcity of expert data in many real-world domains. A fundamental problem in this scenario is how to extract positive behaviors from noisy data. In general, current approaches to the problem select data building on state-action similarity to given expert demonstrations, neglecting precious information in (potentially abundant) $\textit{diverse}$ state-actions that deviate from expert ones. In this paper, we introduce a simple yet effective data selection method that identifies positive behaviors based on their resultant states -- a more informative criterion enabling explicit utilization of dynamics information and effective extraction of both expert and beneficial diverse behaviors. Further, we devise a lightweight behavior cloning algorithm capable of leveraging the expert and selected data correctly. In the experiments, we evaluate our method on a suite of complex and high-dimensional offline IL benchmarks, including continuous-control and vision-based tasks. The results demonstrate that our method achieves state-of-the-art performance, outperforming existing methods on $\textbf{20/21}$ benchmarks, typically by $\textbf{2-5x}$, while maintaining a comparable runtime to Behavior Cloning ($\texttt{BC}$).


RobWE: Robust Watermark Embedding for Personalized Federated Learning Model Ownership Protection

arXiv.org Artificial Intelligence

Embedding watermarks into models has been widely used to protect model ownership in federated learning (FL). However, existing methods are inadequate for protecting the ownership of personalized models acquired by clients in personalized FL (PFL). This is due to the aggregation of the global model in PFL, resulting in conflicts over clients' private watermarks. Moreover, malicious clients may tamper with embedded watermarks to facilitate model leakage and evade accountability. This paper presents a robust watermark embedding scheme, named RobWE, to protect the ownership of personalized models in PFL. We first decouple the watermark embedding of personalized models into two parts: head layer embedding and representation layer embedding. The head layer belongs to clients' private part without participating in model aggregation, while the representation layer is the shared part for aggregation. For representation layer embedding, we employ a watermark slice embedding operation, which avoids watermark embedding conflicts. Furthermore, we design a malicious watermark detection scheme enabling the server to verify the correctness of watermarks before aggregating local models. We conduct an exhaustive experimental evaluation of RobWE. The results demonstrate that RobWE significantly outperforms the state-of-the-art watermark embedding schemes in FL in terms of fidelity, reliability, and robustness.


Mutual Enhancement of Large and Small Language Models with Cross-Silo Knowledge Transfer

arXiv.org Artificial Intelligence

While large language models (LLMs) are empowered with broad knowledge, their task-specific performance is often suboptimal. It necessitates fine-tuning LLMs with task-specific data, but such data may be inaccessible due to privacy concerns. In this paper, we propose a novel approach to enhance LLMs with smaller language models (SLMs) that are trained on clients using their private task-specific data. To enable mutual enhancement between LLMs and SLMs, we propose CrossLM, where the SLMs promote the LLM to generate task-specific high-quality data, and both the LLM and SLMs are enhanced with the generated data. We evaluate CrossLM using publicly accessible language models across a range of benchmark tasks. The results demonstrate that CrossLM significantly enhances the task-specific performance of SLMs on clients and the LLM on the cloud server simultaneously while preserving the LLM's generalization capability.


Classification of Hand Movements from EEG using a Deep Attention-based LSTM Network

arXiv.org Machine Learning

Classifying limb movements using brain activity is an important task in Brain-computer Interfaces (BCI) that has been successfully used in multiple application domains, ranging from human-computer interaction to medical and biomedical applications. This paper proposes a novel solution for classification of left/right hand movement by exploiting a Long Short-Term Memory (LSTM) network with attention mechanism to learn from sequential data available in the electroencephalogram (EEG) signals. In this context, a wide range of time and frequency domain features are first extracted from the EEG signal and are then evaluated using a Random Forest (RF) to select the most important features. The selected features are arranged as a spatio-temporal sequence to feed the LSTM network, learning from the sequential data to perform the classification task. We conduct extensive experiments with the EEG motor movement/imagery database and show that our proposed solution achieves effective results outperforming baseline methods and the state-of-the-art in both intra-subject and cross-subject evaluation schemes. Moreover, we utilize the proposed framework to analyze the information as received by the sensors and monitor the activated regions of the brain by tracking EEG topography throughout the experiments.