Goto

Collaborating Authors

 Zhang, Xuemiao


FRAME: Boosting LLMs with A Four-Quadrant Multi-Stage Pretraining Strategy

arXiv.org Artificial Intelligence

Large language models (LLMs) have significantly advanced human language understanding and generation, with pretraining data quality and organization being crucial to their performance. Multi-stage pretraining is a promising approach, but existing methods often lack quantitative criteria for data partitioning and instead rely on intuitive heuristics. In this paper, we propose the novel Four-quadRAnt Multi-stage prEtraining strategy (FRAME), guided by the established principle of organizing the pretraining process into four stages to achieve significant loss reductions four times. This principle is grounded in two key findings: first, training on high Perplexity (PPL) data followed by low PPL data, and second, training on low PPL difference (PD) data followed by high PD data, both causing the loss to drop significantly twice and performance enhancements. By partitioning data into four quadrants and strategically organizing them, FRAME achieves a remarkable 16.8% average improvement over random across MMLU and CMMLU for the 3B model, effectively boosting LLM performance.


Preference Curriculum: LLMs Should Always Be Pretrained on Their Preferred Data

arXiv.org Artificial Intelligence

Large language models (LLMs) generally utilize a consistent data distribution throughout the pretraining process. However, as the model's capability improves, it is intuitive that its data preferences dynamically change, indicating the need for pretraining with different data at various training stages. To achieve it, we propose the Perplexity Difference (PD) based Preference Curriculum learning (PDPC) framework, which always perceives and uses the data preferred by LLMs to train and boost them. First, we introduce the PD metric to quantify the difference in how challenging a sample is for weak versus strong models. Samples with high PD are more challenging for weak models to learn and are more suitable to be arranged in the later stage of pretraining. Second, we propose the preference function to approximate and predict the data preference of the LLM at any training step, so as to complete the arrangement of the dataset offline and ensure continuous training without interruption. Experimental results on 1.3B and 3B models demonstrate that PDPC significantly surpasses baselines. Notably, the 3B model trained on 1T tokens achieves an increased average accuracy of over 8.1% across MMLU and CMMLU.


FIRE: Flexible Integration of Data Quality Ratings for Effective Pre-Training

arXiv.org Artificial Intelligence

Selecting high-quality data can significantly improve the pretraining efficiency of large language models (LLMs). Existing methods generally rely on heuristic techniques and single-quality signals, limiting their ability to evaluate data quality comprehensively. In this work, we propose FIRE, a flexible and scalable framework for integrating multiple data quality raters, which allows for a comprehensive assessment of data quality across various dimensions. FIRE aligns multiple quality signals into a unified space, and integrates diverse data quality raters to provide a comprehensive quality signal for each data point. Further, we introduce a progressive data selection scheme based on FIRE that iteratively refines the selection of high-quality data points. Experiments on the SlimPajama dataset reveal that FIRE outperforms other data selection methods and significantly enhances the pretrained model across a wide range of downstream tasks, with a 2.9% average performance improvement over Random and reducing the FLOPs necessary to achieve a certain performance level by more than half.