Zhang, Xu-Yao
Towards Efficient and General-Purpose Few-Shot Misclassification Detection for Vision-Language Models
Zeng, Fanhu, Cheng, Zhen, Zhu, Fei, Zhang, Xu-Yao
Reliable prediction by classifiers is crucial for their deployment in high security and dynamically changing situations. However, modern neural networks often exhibit overconfidence for misclassified predictions, highlighting the need for confidence estimation to detect errors. Despite the achievements obtained by existing methods on small-scale datasets, they all require training from scratch and there are no efficient and effective misclassification detection (MisD) methods, hindering practical application towards large-scale and ever-changing datasets. In this paper, we pave the way to exploit vision language model (VLM) leveraging text information to establish an efficient and general-purpose misclassification detection framework. By harnessing the power of VLM, we construct FSMisD, a Few-Shot prompt learning framework for MisD to refrain from training from scratch and therefore improve tuning efficiency. To enhance misclassification detection ability, we use adaptive pseudo sample generation and a novel negative loss to mitigate the issue of overconfidence by pushing category prompts away from pseudo features. We conduct comprehensive experiments with prompt learning methods and validate the generalization ability across various datasets with domain shift. Significant and consistent improvement demonstrates the effectiveness, efficiency and generalizability of our approach.
Federated Continual Instruction Tuning
Guo, Haiyang, Zeng, Fanhu, Zhu, Fei, Liu, Wenzhuo, Wang, Da-Han, Xu, Jian, Zhang, Xu-Yao, Liu, Cheng-Lin
A vast amount of instruction tuning data is crucial for the impressive performance of Large Multimodal Models (LMMs), but the associated computational costs and data collection demands during supervised fine-tuning make it impractical for most researchers. Federated learning (FL) has the potential to leverage all distributed data and training resources to reduce the overhead of joint training. However, most existing methods assume a fixed number of tasks, while in real-world scenarios, clients continuously encounter new knowledge and often struggle to retain old tasks due to memory constraints. In this work, we introduce the Federated Continual Instruction Tuning (FCIT) benchmark to model this real-world challenge. Our benchmark includes two realistic scenarios, encompassing four different settings and twelve carefully curated instruction tuning datasets. To address the challenges posed by FCIT, we propose dynamic knowledge organization to effectively integrate updates from different tasks during training and subspace selective activation to allocate task-specific output during inference. Extensive experimental results demonstrate that our proposed method significantly enhances model performance across varying levels of data heterogeneity and catastrophic forgetting. Our source code and dataset will be made publicly available.
HiDe-LLaVA: Hierarchical Decoupling for Continual Instruction Tuning of Multimodal Large Language Model
Guo, Haiyang, Zeng, Fanhu, Xiang, Ziwei, Zhu, Fei, Wang, Da-Han, Zhang, Xu-Yao, Liu, Cheng-Lin
Instruction tuning is widely used to improve a pre-trained Multimodal Large Language Model (MLLM) by training it on curated task-specific datasets, enabling better comprehension of human instructions. However, it is infeasible to collect all possible instruction datasets simultaneously in real-world scenarios. Thus, enabling MLLM with continual instruction tuning is essential for maintaining their adaptability. However, existing methods often trade off memory efficiency for performance gains, significantly compromising overall efficiency. In this paper, we propose a task-specific expansion and task-general fusion framework based on the variations in Centered Kernel Alignment (CKA) similarity across different model layers when trained on diverse datasets. Furthermore, we analyze the information leakage present in the existing benchmark and propose a new and more challenging benchmark to rationally evaluate the performance of different methods. Comprehensive experiments showcase a significant performance improvement of our method compared to existing state-of-the-art methods. Our code will be public available.
DESIRE: Dynamic Knowledge Consolidation for Rehearsal-Free Continual Learning
Guo, Haiyang, Zhu, Fei, Zeng, Fanhu, Liu, Bing, Zhang, Xu-Yao
Continual learning aims to equip models with the ability to retain previously learned knowledge like a human. Recent work incorporating Parameter-Efficient Fine-Tuning has revitalized the field by introducing lightweight extension modules. However, existing methods usually overlook the issue of information leakage caused by the fact that the experiment data have been used in pre-trained models. Once these duplicate data are removed in the pre-training phase, their performance can be severely affected. In this paper, we propose a new LoRA-based rehearsal-free method named DESIRE. Our method avoids imposing additional constraints during training to mitigate catastrophic forgetting, thereby maximizing the learning of new classes. To integrate knowledge from old and new tasks, we propose two efficient post-processing modules. On the one hand, we retain only two sets of LoRA parameters for merging and propose dynamic representation consolidation to calibrate the merged feature representation. On the other hand, we propose decision boundary refinement to address classifier bias when training solely on new class data. Extensive experiments demonstrate that our method achieves state-of-the-art performance on multiple datasets and strikes an effective balance between stability and plasticity. Our code will be publicly available.
Open-world Machine Learning: A Review and New Outlooks
Zhu, Fei, Ma, Shijie, Cheng, Zhen, Zhang, Xu-Yao, Zhang, Zhaoxiang, Liu, Cheng-Lin
Machine learning has achieved remarkable success in many applications. However, existing studies are largely based on the closed-world assumption, which assumes that the environment is stationary, and the model is fixed once deployed. In many real-world applications, this fundamental and rather naive assumption may not hold because an open environment is complex, dynamic, and full of unknowns. In such cases, rejecting unknowns, discovering novelties, and then incrementally learning them, could enable models to be safe and evolve continually as biological systems do. This paper provides a holistic view of open-world machine learning by investigating unknown rejection, novel class discovery, and class-incremental learning in a unified paradigm. The challenges, principles, and limitations of current methodologies are discussed in detail. Finally, we discuss several potential directions for future research. This paper aims to provide a comprehensive introduction to the emerging open-world machine learning paradigm, to help researchers build more powerful AI systems in their respective fields, and to promote the development of artificial general intelligence.
Revisiting Confidence Estimation: Towards Reliable Failure Prediction
Zhu, Fei, Zhang, Xu-Yao, Cheng, Zhen, Liu, Cheng-Lin
Reliable confidence estimation is a challenging yet fundamental requirement in many risk-sensitive applications. However, modern deep neural networks are often overconfident for their incorrect predictions, i.e., misclassified samples from known classes, and out-of-distribution (OOD) samples from unknown classes. In recent years, many confidence calibration and OOD detection methods have been developed. In this paper, we find a general, widely existing but actually-neglected phenomenon that most confidence estimation methods are harmful for detecting misclassification errors. We investigate this problem and reveal that popular calibration and OOD detection methods often lead to worse confidence separation between correctly classified and misclassified examples, making it difficult to decide whether to trust a prediction or not. Finally, we propose to enlarge the confidence gap by finding flat minima, which yields state-of-the-art failure prediction performance under various settings including balanced, long-tailed, and covariate-shift classification scenarios. Our study not only provides a strong baseline for reliable confidence estimation but also acts as a bridge between understanding calibration, OOD detection, and failure prediction. The code is available at \url{https://github.com/Impression2805/FMFP}.
Unified Classification and Rejection: A One-versus-All Framework
Cheng, Zhen, Zhang, Xu-Yao, Liu, Cheng-Lin
Classifying patterns of known classes and rejecting ambiguous and novel (also called as out-of-distribution (OOD)) inputs are involved in open world pattern recognition. Deep neural network models usually excel in closed-set classification while performing poorly in rejecting OOD. To tackle this problem, numerous methods have been designed to perform open set recognition (OSR) or OOD rejection/detection tasks. Previous methods mostly take post-training score transformation or hybrid models to ensure low scores on OOD inputs while separating known classes. In this paper, we attempt to build a unified framework for building open set classifiers for both classification and OOD rejection. We formulate the open set recognition of $ K $-known-class as a $ (K + 1) $-class classification problem with model trained on known-class samples only. By decomposing the $ K $-class problem into $ K $ one-versus-all (OVA) binary classification tasks and binding some parameters, we show that combining the scores of OVA classifiers can give $ (K + 1) $-class posterior probabilities, which enables classification and OOD rejection in a unified framework. To maintain the closed-set classification accuracy of the OVA trained classifier, we propose a hybrid training strategy combining OVA loss and multi-class cross-entropy loss. We implement the OVA framework and hybrid training strategy on the recently proposed convolutional prototype network. Experiments on popular OSR and OOD detection datasets demonstrate that the proposed framework, using a single multi-class classifier, yields competitive performance in closed-set classification, OOD detection, and misclassification detection.
Towards Reliable Domain Generalization: A New Dataset and Evaluations
Zhang, Jiao, Zhang, Xu-Yao, Liu, Cheng-Lin
There are ubiquitous distribution shifts in the real world. However, deep neural networks (DNNs) are easily biased towards the training set, which causes severe performance degradation when they receive out-of-distribution data. Many methods are studied to train models that generalize under various distribution shifts in the literature of domain generalization (DG). However, the recent DomainBed and WILDS benchmarks challenged the effectiveness of these methods. Aiming at the problems in the existing research, we propose a new domain generalization task for handwritten Chinese character recognition (HCCR) to enrich the application scenarios of DG method research. We evaluate eighteen DG methods on the proposed PaHCC (Printed and Handwritten Chinese Characters) dataset and show that the performance of existing methods on this dataset is still unsatisfactory. Besides, under a designed dynamic DG setting, we reveal more properties of DG methods and argue that only the leave-one-domain-out protocol is unreliable. We advocate that researchers in the DG community refer to dynamic performance of methods for more comprehensive and reliable evaluation. Our dataset and evaluations bring new perspectives to the community for more substantial progress. We will make our dataset public with the article published to facilitate the study of domain generalization.
Dynamics-Aware Loss for Learning with Label Noise
Li, Xiu-Chuan, Xia, Xiaobo, Zhu, Fei, Liu, Tongliang, Zhang, Xu-Yao, Liu, Cheng-Lin
Label noise poses a serious threat to deep neural networks (DNNs). Employing robust loss functions which reconcile fitting ability with robustness is a simple but effective strategy to handle this problem. However, the widely-used static trade-off between these two factors contradicts the dynamics of DNNs learning with label noise, leading to inferior performance. Therefore, we propose a dynamics-aware loss (DAL) to solve this problem. Considering that DNNs tend to first learn beneficial patterns, then gradually overfit harmful label noise, DAL strengthens the fitting ability initially, then gradually improves robustness. Moreover, at the later stage, to further reduce the negative impact of label noise and combat underfitting simultaneously, we let DNNs put more emphasis on easy examples than hard ones and introduce a bootstrapping term. Both the detailed theoretical analyses and extensive experimental results demonstrate the superiority of our method. Our source code can be found in https://github.com/XiuchuanLi/DAL.
Towards Trustworthy Dataset Distillation
Ma, Shijie, Zhu, Fei, Cheng, Zhen, Zhang, Xu-Yao
Efficiency and trustworthiness are two eternal pursuits when applying deep learning in real-world applications. With regard to efficiency, dataset distillation (DD) endeavors to reduce training costs by distilling the large dataset into a tiny synthetic dataset. However, existing methods merely concentrate on in-distribution (InD) classification in a closed-world setting, disregarding out-of-distribution (OOD) samples. On the other hand, OOD detection aims to enhance models' trustworthiness, which is always inefficiently achieved in full-data settings. For the first time, we simultaneously consider both issues and propose a novel paradigm called Trustworthy Dataset Distillation (TrustDD). By distilling both InD samples and outliers, the condensed datasets are capable to train models competent in both InD classification and OOD detection. To alleviate the requirement of real outlier data and make OOD detection more practical, we further propose to corrupt InD samples to generate pseudo-outliers and introduce Pseudo-Outlier Exposure (POE). Comprehensive experiments on various settings demonstrate the effectiveness of TrustDD, and the proposed POE surpasses state-of-the-art method Outlier Exposure (OE). Compared with the preceding DD, TrustDD is more trustworthy and applicable to real open-world scenarios. Our code will be publicly available.