Goto

Collaborating Authors

 Zhang, Xiuzhen


A Macro- and Micro-Hierarchical Transfer Learning Framework for Cross-Domain Fake News Detection

arXiv.org Artificial Intelligence

Cross-domain fake news detection aims to mitigate domain shift and improve detection performance by transferring knowledge across domains. Existing approaches transfer knowledge based on news content and user engagements from a source domain to a target domain. However, these approaches face two main limitations, hindering effective knowledge transfer and optimal fake news detection performance. Firstly, from a micro perspective, they neglect the negative impact of veracity-irrelevant features in news content when transferring domain-shared features across domains. Secondly, from a macro perspective, existing approaches ignore the relationship between user engagement and news content, which reveals shared behaviors of common users across domains and can facilitate more effective knowledge transfer. To address these limitations, we propose a novel macro- and micro- hierarchical transfer learning framework (MMHT) for cross-domain fake news detection. Firstly, we propose a micro-hierarchical disentangling module to disentangle veracity-relevant and veracity-irrelevant features from news content in the source domain for improving fake news detection performance in the target domain. Secondly, we propose a macro-hierarchical transfer learning module to generate engagement features based on common users' shared behaviors in different domains for improving effectiveness of knowledge transfer. Extensive experiments on real-world datasets demonstrate that our framework significantly outperforms the state-of-the-art baselines.


Teaching Large Language Models Number-Focused Headline Generation With Key Element Rationales

arXiv.org Artificial Intelligence

Number-focused headline generation is a summarization task requiring both high textual quality and precise numerical accuracy, which poses a unique challenge for Large Language Models (LLMs). Existing studies in the literature focus only on either textual quality or numerical reasoning and thus are inadequate to address this challenge. In this paper, we propose a novel chain-of-thought framework for using rationales comprising key elements of the Topic, Entities, and Numerical reasoning (TEN) in news articles to enhance the capability for LLMs to generate topic-aligned high-quality texts with precise numerical accuracy. Specifically, a teacher LLM is employed to generate TEN rationales as supervision data, which are then used to teach and fine-tune a student LLM. Our approach teaches the student LLM automatic generation of rationales with enhanced capability for numerical reasoning and topic-aligned numerical headline generation. Experiments show that our approach achieves superior performance in both textual quality and numerical accuracy.


Graph2text or Graph2token: A Perspective of Large Language Models for Graph Learning

arXiv.org Artificial Intelligence

Graphs are data structures used to represent irregular networks and are prevalent in numerous real-world applications. Previous methods directly model graph structures and achieve significant success. However, these methods encounter bottlenecks due to the inherent irregularity of graphs. An innovative solution is converting graphs into textual representations, thereby harnessing the powerful capabilities of Large Language Models (LLMs) to process and comprehend graphs. In this paper, we present a comprehensive review of methodologies for applying LLMs to graphs, termed LLM4graph. The core of LLM4graph lies in transforming graphs into texts for LLMs to understand and analyze. Thus, we propose a novel taxonomy of LLM4graph methods in the view of the transformation. Specifically, existing methods can be divided into two paradigms: Graph2text and Graph2token, which transform graphs into texts or tokens as the input of LLMs, respectively. We point out four challenges during the transformation to systematically present existing methods in a problem-oriented perspective. For practical concerns, we provide a guideline for researchers on selecting appropriate models and LLMs for different graphs and hardware constraints. We also identify five future research directions for LLM4graph.


FUGNN: Harmonizing Fairness and Utility in Graph Neural Networks

arXiv.org Artificial Intelligence

Fairness-aware Graph Neural Networks (GNNs) often face a challenging trade-off, where prioritizing fairness may require compromising utility. In this work, we re-examine fairness through the lens of spectral graph theory, aiming to reconcile fairness and utility within the framework of spectral graph learning. We explore the correlation between sensitive features and spectrum in GNNs, using theoretical analysis to delineate the similarity between original sensitive features and those after convolution under different spectrum. Our analysis reveals a reduction in the impact of similarity when the eigenvectors associated with the largest magnitude eigenvalue exhibit directional similarity. Based on these theoretical insights, we propose FUGNN, a novel spectral graph learning approach that harmonizes the conflict between fairness and utility. FUGNN ensures algorithmic fairness and utility by truncating the spectrum and optimizing eigenvector distribution during the encoding process. The fairness-aware eigenvector selection reduces the impact of convolution on sensitive features while concurrently minimizing the sacrifice of utility. FUGNN further optimizes the distribution of eigenvectors through a transformer architecture. By incorporating the optimized spectrum into the graph convolution network, FUGNN effectively learns node representations. Experiments on six real-world datasets demonstrate the superiority of FUGNN over baseline methods. The codes are available at https://github.com/yushuowiki/FUGNN.


FairGT: A Fairness-aware Graph Transformer

arXiv.org Artificial Intelligence

The design of Graph Transformers (GTs) generally neglects considerations for fairness, resulting in biased outcomes against certain sensitive subgroups. Since GTs encode graph information without relying on message-passing mechanisms, conventional fairness-aware graph learning methods cannot be directly applicable to address these issues. To tackle this challenge, we propose FairGT, a Fairness-aware Graph Transformer explicitly crafted to mitigate fairness concerns inherent in GTs. FairGT incorporates a meticulous structural feature selection strategy and a multi-hop node feature integration method, ensuring independence of sensitive features and bolstering fairness considerations. These fairness-aware graph information encodings seamlessly integrate into the Transformer framework for downstream tasks. We also prove that the proposed fair structural topology encoding with adjacency matrix eigenvector selection and multi-hop integration are theoretically effective. Empirical evaluations conducted across five real-world datasets demonstrate FairGT's superiority in fairness metrics over existing graph transformers, graph neural networks, and state-of-the-art fairness-aware graph learning approaches.


CMA-R:Causal Mediation Analysis for Explaining Rumour Detection

arXiv.org Artificial Intelligence

We apply causal mediation analysis to explain the decision-making process of neural models for rumour detection on Twitter. Interventions at the input and network level reveal the causal impacts of tweets and words in the model output. We find that our approach CMA-R -- Causal Mediation Analysis for Rumour detection -- identifies salient tweets that explain model predictions and show strong agreement with human judgements for critical tweets determining the truthfulness of stories. CMA-R can further highlight causally impactful words in the salient tweets, providing another layer of interpretability and transparency into these blackbox rumour detection systems. Code is available at: https://github.com/ltian678/cma-r.


Bias in Opinion Summarisation from Pre-training to Adaptation: A Case Study in Political Bias

arXiv.org Artificial Intelligence

Opinion summarisation aims to summarise the salient information and opinions presented in documents such as product reviews, discussion forums, and social media texts into short summaries that enable users to effectively understand the opinions therein. Generating biased summaries has the risk of potentially swaying public opinion. Previous studies focused on studying bias in opinion summarisation using extractive models, but limited research has paid attention to abstractive summarisation models. In this study, using political bias as a case study, we first establish a methodology to quantify bias in abstractive models, then trace it from the pre-trained models to the task of summarising social media opinions using different models and adaptation methods. We find that most models exhibit intrinsic bias. Using a social media text summarisation dataset and contrasting various adaptation methods, we find that tuning a smaller number of parameters is less biased compared to standard fine-tuning; however, the diversity of topics in training data used for fine-tuning is critical.


Harnessing Network Effect for Fake News Mitigation: Selecting Debunkers via Self-Imitation Learning

arXiv.org Artificial Intelligence

This study aims to minimize the influence of fake news on social networks by deploying debunkers to propagate true news. This is framed as a reinforcement learning problem, where, at each stage, one user is selected to propagate true news. A challenging issue is episodic reward where the "net" effect of selecting individual debunkers cannot be discerned from the interleaving information propagation on social networks, and only the collective effect from mitigation efforts can be observed. Existing Self-Imitation Learning (SIL) methods have shown promise in learning from episodic rewards, but are ill-suited to the real-world application of fake news mitigation because of their poor sample efficiency. To learn a more effective debunker selection policy for fake news mitigation, this study proposes NAGASIL - Negative sampling and state Augmented Generative Adversarial Self-Imitation Learning, which consists of two improvements geared towards fake news mitigation: learning from negative samples, and an augmented state representation to capture the "real" environment state by integrating the current observed state with the previous state-action pairs from the same campaign. Experiments on two social networks show that NAGASIL yields superior performance to standard GASIL and state-of-the-art fake news mitigation models.


Trustworthy Recommender Systems

arXiv.org Artificial Intelligence

Recommender systems (RSs) aim to help users to effectively retrieve items of their interests from a large catalogue. For a quite long period of time, researchers and practitioners have been focusing on developing accurate RSs. Recent years have witnessed an increasing number of threats to RSs, coming from attacks, system and user generated noise, system bias. As a result, it has become clear that a strict focus on RS accuracy is limited and the research must consider other important factors, e.g., trustworthiness. For end users, a trustworthy RS (TRS) should not only be accurate, but also transparent, unbiased and fair as well as robust to noise or attacks. These observations actually led to a paradigm shift of the research on RSs: from accuracy-oriented RSs to TRSs. However, researchers lack a systematic overview and discussion of the literature in this novel and fast developing field of TRSs. To this end, in this paper, we provide an overview of TRSs, including a discussion of the motivation and basic concepts of TRSs, a presentation of the challenges in building TRSs, and a perspective on the future directions in this area. We also provide a novel conceptual framework to support the construction of TRSs.


Utilising a Large Language Model to Annotate Subject Metadata: A Case Study in an Australian National Research Data Catalogue

arXiv.org Artificial Intelligence

In support of open and reproducible research, there has been a rapidly increasing number of datasets made available for research. As the availability of datasets increases, it becomes more important to have quality metadata for discovering and reusing them. Yet, it is a common issue that datasets often lack quality metadata due to limited resources for data curation. Meanwhile, technologies such as artificial intelligence and large language models (LLMs) are progressing rapidly. Recently, systems based on these technologies, such as ChatGPT, have demonstrated promising capabilities for certain data curation tasks. This paper proposes to leverage LLMs for cost-effective annotation of subject metadata through the LLM-based in-context learning. Our method employs GPT-3.5 with prompts designed for annotating subject metadata, demonstrating promising performance in automatic metadata annotation. However, models based on in-context learning cannot acquire discipline-specific rules, resulting in lower performance in several categories. This limitation arises from the limited contextual information available for subject inference. To the best of our knowledge, we are introducing, for the first time, an in-context learning method that harnesses large language models for automated subject metadata annotation.