Goto

Collaborating Authors

 Zhang, Xiaopeng


Security Closure of IC Layouts Against Hardware Trojans

arXiv.org Artificial Intelligence

Due to cost benefits, supply chains of integrated circuits (ICs) are largely outsourced nowadays. However, passing ICs through various third-party providers gives rise to many threats, like piracy of IC intellectual property or insertion of hardware Trojans, i.e., malicious circuit modifications. In this work, we proactively and systematically harden the physical layouts of ICs against post-design insertion of Trojans. Toward that end, we propose a multiplexer-based logic-locking scheme that is (i) devised for layout-level Trojan prevention, (ii) resilient against state-of-the-art, oracle-less machine learning attacks, and (iii) fully integrated into a tailored, yet generic, commercial-grade design flow. Our work provides in-depth security and layout analysis on a challenging benchmark suite. We show that ours can render layouts resilient, with reasonable overheads, against Trojan insertion in general and also against second-order attacks (i.e., adversaries seeking to bypass the locking defense in an oracle-less setting). We release our layout artifacts for independent verification [29] and we will release our methodology's source code.


The KFIoU Loss for Rotated Object Detection

arXiv.org Artificial Intelligence

Differing from the well-developed horizontal object detection area whereby the computing-friendly IoU based loss is readily adopted and well fits with the detection metrics. In contrast, rotation detectors often involve a more complicated loss based on SkewIoU which is unfriendly to gradient-based training. In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss instead of the strict value-level identity. Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU by its definition, and show its alignment with the SkewIoU at trend-level. This is in contrast to recent Gaussian modeling based rotation detectors e.g. GWD, KLD that involves a human-specified distribution distance metric which requires additional hyperparameter tuning. The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU, thanks to its full differentiability and ability to handle the non-overlapping cases. We further extend our technique to the 3-D case which also suffers from the same issues as 2-D detection. Extensive results on various public datasets (2-D/3-D, aerial/text/face images) with different base detectors show the effectiveness of our approach.


Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss

arXiv.org Artificial Intelligence

Boundary discontinuity and its inconsistency to the final detection metric have been the bottleneck for rotating detection regression loss design. In this paper, we propose a novel regression loss based on Gaussian Wasserstein distance as a fundamental approach to solve the problem. Specifically, the rotated bounding box is converted to a 2-D Gaussian distribution, which enables to approximate the indifferentiable rotational IoU induced loss by the Gaussian Wasserstein distance (GWD) which can be learned efficiently by gradient back-propagation. GWD can still be informative for learning even there is no overlapping between two rotating bounding boxes which is often the case for small object detection. Thanks to its three unique properties, GWD can also elegantly solve the boundary discontinuity and square-like problem regardless how the bounding box is defined. Experiments on five datasets using different detectors show the effectiveness of our approach. Codes are available at https://github.com/yangxue0827/RotationDetection.


Capacity Preserving Mapping for High-dimensional Data Visualization

arXiv.org Machine Learning

We provide a rigorous mathematical treatment to the crowding issue in data visualization when high dimensional data sets are projected down to low dimensions for visualization. By properly adjusting the capacity of high dimensional balls, our method makes right enough room to prepare for the embedding. A key component of the proposed method is an estimation of the correlation dimension at various scales which reflects the data density variation. The proposed adjustment to the capacity applies to any distance (Euclidean, geodesic, diffusion) and can potentially be used in many existing methods to mitigate the crowding during the dimension reduction. We demonstrate the effectiveness of the new method using synthetic and real datasets.


Distilling Object Detectors with Fine-grained Feature Imitation

arXiv.org Artificial Intelligence

State-of-the-art CNN based recognition models are often computationally prohibitive to deploy on low-end devices. A promising high level approach tackling this limitation is knowledge distillation, which let small student model mimic cumbersome teacher model's output to get improved generalization. However, related methods mainly focus on simple task of classification while do not consider complex tasks like object detection. We show applying the vanilla knowledge distillation to detection model gets minor gain. To address the challenge of distilling knowledge in detection model, we propose a fine-grained feature imitation method exploiting the cross-location discrepancy of feature response. Our intuition is that detectors care more about local near object regions. Thus the discrepancy of feature response on the near object anchor locations reveals important information of how teacher model tends to generalize. We design a novel mechanism to estimate those locations and let student model imitate the teacher on them to get enhanced performance. We first validate the idea on a developed lightweight toy detector which carries simplest notion of current state-of-the-art anchor based detection models on challenging KITTI dataset, our method generates up to 15% boost of mAP for the student model compared to the non-imitated counterpart. We then extensively evaluate the method with Faster R-CNN model under various scenarios with common object detection benchmark of Pascal VOC and COCO, imitation alleviates up to 74% performance drop of student model compared to teacher. Codes released at https://github.com/twangnh/Distilling-Object-Detectors


Low-Power Computer Vision: Status, Challenges, Opportunities

arXiv.org Artificial Intelligence

Computer vision has achieved impressive progress in recent years. Meanwhile, mobile phones have become the primary computing platforms for millions of people. In addition to mobile phones, many autonomous systems rely on visual data for making decisions and some of these systems have limited energy (such as unmanned aerial vehicles also called drones and mobile robots). These systems rely on batteries and energy efficiency is critical. This article serves two main purposes: (1) Examine the state-of-the-art for low-power solutions to detect objects in images. Since 2015, the IEEE Annual International Low-Power Image Recognition Challenge (LPIRC) has been held to identify the most energy-efficient computer vision solutions. This article summarizes 2018 winners' solutions. (2) Suggest directions for research as well as opportunities for low-power computer vision.