Zhang, Xiaopeng
RASA: Replace Anyone, Say Anything -- A Training-Free Framework for Audio-Driven and Universal Portrait Video Editing
Pan, Tianrui, Liu, Lin, Liu, Jie, Zhang, Xiaopeng, Tang, Jie, Wu, Gangshan, Tian, Qi
Portrait video editing focuses on modifying specific attributes of portrait videos, guided by audio or video streams. Previous methods typically either concentrate on lip-region reenactment or require training specialized models to extract keypoints for motion transfer to a new identity. In this paper, we introduce a training-free universal portrait video editing framework that provides a versatile and adaptable editing strategy. This framework supports portrait appearance editing conditioned on the changed first reference frame, as well as lip editing conditioned on varied speech, or a combination of both. It is based on a Unified Animation Control (UAC) mechanism with source inversion latents to edit the entire portrait, including visual-driven shape control, audio-driven speaking control, and inter-frame temporal control. Furthermore, our method can be adapted to different scenarios by adjusting the initial reference frame, enabling detailed editing of portrait videos with specific head rotations and facial expressions. This comprehensive approach ensures a holistic and flexible solution for portrait video editing. The experimental results show that our model can achieve more accurate and synchronized lip movements for the lip editing task, as well as more flexible motion transfer for the appearance editing task. Demo is available at https://alice01010101.github.io/RASA/.
Refining Alignment Framework for Diffusion Models with Intermediate-Step Preference Ranking
Ren, Jie, Zhang, Yuhang, Liu, Dongrui, Zhang, Xiaopeng, Tian, Qi
Direct preference optimization (DPO) has shown success in aligning diffusion models with human preference. Previous approaches typically assume a consistent preference label between final generations and noisy samples at intermediate steps, and directly apply DPO to these noisy samples for fine-tuning. However, we theoretically identify inherent issues in this assumption and its impacts on the effectiveness of preference alignment. We first demonstrate the inherent issues from two perspectives: gradient direction and preference order, and then propose a Tailored Preference Optimization (TailorPO) framework for aligning diffusion models with human preference, underpinned by some theoretical insights. Our approach directly ranks intermediate noisy samples based on their step-wise reward, and effectively resolves the gradient direction issues through a simple yet efficient design. Additionally, we incorporate the gradient guidance of diffusion models into preference alignment to further enhance the optimization effectiveness. Experimental results demonstrate that our method significantly improves the model's ability to generate aesthetically pleasing and human-preferred images.
Stepping Forward on the Last Mile
Feng, Chen, Zhuo, Shaojie, Zhang, Xiaopeng, Ramakrishnan, Ramchalam Kinattinkara, Yuan, Zhaocong, Li, Andrew Zou
Continuously adapting pre-trained models to local data on resource constrained edge devices is the $\emph{last mile}$ for model deployment. However, as models increase in size and depth, backpropagation requires a large amount of memory, which becomes prohibitive for edge devices. In addition, most existing low power neural processing engines (e.g., NPUs, DSPs, MCUs, etc.) are designed as fixed-point inference accelerators, without training capabilities. Forward gradients, solely based on directional derivatives computed from two forward calls, have been recently used for model training, with substantial savings in computation and memory. However, the performance of quantized training with fixed-point forward gradients remains unclear. In this paper, we investigate the feasibility of on-device training using fixed-point forward gradients, by conducting comprehensive experiments across a variety of deep learning benchmark tasks in both vision and audio domains. We propose a series of algorithm enhancements that further reduce the memory footprint, and the accuracy gap compared to backpropagation. An empirical study on how training with forward gradients navigates in the loss landscape is further explored. Our results demonstrate that on the last mile of model customization on edge devices, training with fixed-point forward gradients is a feasible and practical approach.
A Unified Hallucination Mitigation Framework for Large Vision-Language Models
Chang, Yue, Jing, Liqiang, Zhang, Xiaopeng, Zhang, Yue
Hallucination is a common problem for Large Vision-Language Models (LVLMs) with long generations which is difficult to eradicate. The generation with hallucinations is partially inconsistent with the image content. To mitigate hallucination, current studies either focus on the process of model inference or the results of model generation, but the solutions they design sometimes do not deal appropriately with various types of queries and the hallucinations of the generations about these queries. To accurately deal with various hallucinations, we present a unified framework, Dentist, for hallucination mitigation. The core step is to first classify the queries, then perform different processes of hallucination mitigation based on the classification result, just like a dentist first observes the teeth and then makes a plan. In a simple deployment, Dentist can classify queries as perception or reasoning and easily mitigate potential hallucinations in answers which has been demonstrated in our experiments.
TroLLoc: Logic Locking and Layout Hardening for IC Security Closure against Hardware Trojans
Wang, Fangzhou, Wang, Qijing, Alrahis, Lilas, Fu, Bangqi, Jiang, Shui, Zhang, Xiaopeng, Sinanoglu, Ozgur, Ho, Tsung-Yi, Young, Evangeline F. Y., Knechtel, Johann
Due to cost benefits, supply chains of integrated circuits (ICs) are largely outsourced nowadays. However, passing ICs through various third-party providers gives rise to many security threats, like piracy of IC intellectual property or insertion of hardware Trojans, i.e., malicious circuit modifications. In this work, we proactively and systematically protect the physical layouts of ICs against post-design insertion of Trojans. Toward that end, we propose TroLLoc, a novel scheme for IC security closure that employs, for the first time, logic locking and layout hardening in unison. TroLLoc is fully integrated into a commercial-grade design flow, and TroLLoc is shown to be effective, efficient, and robust. Our work provides in-depth layout and security analysis considering the challenging benchmarks of the ISPD'22/23 contests for security closure. We show that TroLLoc successfully renders layouts resilient, with reasonable overheads, against (i) general prospects for Trojan insertion as in the ISPD'22 contest, (ii) actual Trojan insertion as in the ISPD'23 contest, and (iii) potential second-order attacks where adversaries would first (i.e., before Trojan insertion) try to bypass the locking defense, e.g., using advanced machine learning attacks. Finally, we release all our artifacts for independent verification [2].
Spectral Prompt Tuning:Unveiling Unseen Classes for Zero-Shot Semantic Segmentation
Xu, Wenhao, Xu, Rongtao, Wang, Changwei, Xu, Shibiao, Guo, Li, Zhang, Man, Zhang, Xiaopeng
Recently, CLIP has found practical utility in the domain of pixel-level zero-shot segmentation tasks. The present landscape features two-stage methodologies beset by issues such as intricate pipelines and elevated computational costs. While current one-stage approaches alleviate these concerns and incorporate Visual Prompt Training (VPT) to uphold CLIP's generalization capacity, they still fall short in fully harnessing CLIP's potential for pixel-level unseen class demarcation and precise pixel predictions. To further stimulate CLIP's zero-shot dense prediction capability, we propose SPT-SEG, a one-stage approach that improves CLIP's adaptability from image to pixel. Specifically, we initially introduce Spectral Prompt Tuning (SPT), incorporating spectral prompts into the CLIP visual encoder's shallow layers to capture structural intricacies of images, thereby enhancing comprehension of unseen classes. Subsequently, we introduce the Spectral Guided Decoder (SGD), utilizing both high and low-frequency information to steer the network's spatial focus towards more prominent classification features, enabling precise pixel-level prediction outcomes. Through extensive experiments on two public datasets, we demonstrate the superiority of our method over state-of-the-art approaches, performing well across all classes and particularly excelling in handling unseen classes. Code is available at:https://github.com/clearxu/SPT.
AiluRus: A Scalable ViT Framework for Dense Prediction
Li, Jin, Wang, Yaoming, Zhang, Xiaopeng, Shi, Bowen, Jiang, Dongsheng, Li, Chenglin, Dai, Wenrui, Xiong, Hongkai, Tian, Qi
Vision transformers (ViTs) have emerged as a prevalent architecture for vision tasks owing to their impressive performance. However, when it comes to handling long token sequences, especially in dense prediction tasks that require high-resolution input, the complexity of ViTs increases significantly. Notably, dense prediction tasks, such as semantic segmentation or object detection, emphasize more on the contours or shapes of objects, while the texture inside objects is less informative. Motivated by this observation, we propose to apply adaptive resolution for different regions in the image according to their importance. Specifically, at the intermediate layer of the ViT, we utilize a spatial-aware density-based clustering algorithm to select representative tokens from the token sequence. Once the representative tokens are determined, we proceed to merge other tokens into their closest representative token. Consequently, semantic similar tokens are merged together to form low-resolution regions, while semantic irrelevant tokens are preserved independently as high-resolution regions. This strategy effectively reduces the number of tokens, allowing subsequent layers to handle a reduced token sequence and achieve acceleration. We evaluate our proposed method on three different datasets and observe promising performance. For example, the "Segmenter ViT-L" model can be accelerated by 48% FPS without fine-tuning, while maintaining the performance. Additionally, our method can be applied to accelerate fine-tuning as well. Experimental results demonstrate that we can save 52% training time while accelerating 2.46 times FPS with only a 0.09% performance drop. The code is available at https://github.com/caddyless/ailurus/tree/main.
QA-LoRA: Quantization-Aware Low-Rank Adaptation of Large Language Models
Xu, Yuhui, Xie, Lingxi, Gu, Xiaotao, Chen, Xin, Chang, Heng, Zhang, Hengheng, Chen, Zhengsu, Zhang, Xiaopeng, Tian, Qi
Recently years have witnessed a rapid development of large language models (LLMs). Despite the strong ability in many language-understanding tasks, the heavy computational burden largely restricts the application of LLMs especially when one needs to deploy them onto edge devices. In this paper, we propose a quantization-aware low-rank adaptation (QA-LoRA) algorithm. The motivation lies in the imbalanced degrees of freedom of quantization and adaptation, and the solution is to use group-wise operators which increase the degree of freedom of quantization meanwhile decreasing that of adaptation. QA-LoRA is easily implemented with a few lines of code, and it equips the original LoRA with two-fold abilities: (i) during fine-tuning, the LLM's weights are quantized (e.g., into INT4) to reduce time and memory usage; (ii) after fine-tuning, the LLM and auxiliary weights are naturally integrated into a quantized model without loss of accuracy. We apply QA-LoRA to the LLaMA and LLaMA2 model families and validate its effectiveness in different fine-tuning datasets and downstream scenarios. Code will be made available at https://github.com/ The diversity of real-world applications calls for a pipeline in which LLMs can be fine-tuned to fit different scenarios and quantized to be deployed onto edge devices (e.g., mobile phones), and the key issue is to get rid of the heavy computational burden brought by the large number of parameters of LLMs. There are two lines of research for this purpose.
Towards AGI in Computer Vision: Lessons Learned from GPT and Large Language Models
Xie, Lingxi, Wei, Longhui, Zhang, Xiaopeng, Bi, Kaifeng, Gu, Xiaotao, Chang, Jianlong, Tian, Qi
Abstract--The AI community has been pursuing algorithms known as artificial general intelligence (AGI) that apply to any kind of real-world problem. Recently, chat systems powered by large language models (LLMs) emerge and rapidly become a promising direction to achieve AGI in natural language processing (NLP), but the path towards AGI in computer vision (CV) remains unclear. One may owe the dilemma to the fact that visual signals are more complex than language signals, yet we are interested in finding concrete reasons, as well as absorbing experiences from GPT and LLMs to solve the problem. In this paper, we start with a conceptual definition of AGI and briefly review how NLP solves a wide range of tasks via a chat system. The analysis inspires us that unification is the next important goal of CV. But, despite various efforts in this direction, CV is still far from a system like GPT that naturally integrates all tasks. We point out that the essential weakness of CV lies in lacking a paradigm to learn from environments, yet NLP has accomplished the task in the text world. We then imagine a pipeline that puts a CV algorithm (i.e., an agent) in world-scale, interactable environments, pre-trains it to predict future frames with respect to its action, and then fine-tunes it with instruction to accomplish various tasks. We expect substantial research and engineering efforts to push the idea forward and scale it up, for which we share our perspectives on future research directions. Some researchers believed that such systems designs do not generally transfer to other problems such as can be seen as early sparks of AGI [2]. These systems were image captioning [11] or visual content generation [12]. In recent years, enhanced by instruct tuning [4]. Equipped with an external there are many efforts in this direction, and we roughly categorize knowledge base and specifically designed modules, they them into five research topics, namely, (i) open-world can accomplish complex tasks such as solving mathematical visual recognition based on vision-language alignment [13], questions, generating visual contents, etc., reflecting its (ii) the Segment Anything task [14] for generic visual recognition, strong ability to understand users' intentions and perform (iii) generalized visual encoding to unify vision preliminary chain-of-thoughts [5]. Despite known weaknesses tasks [15], [16], [17], (iv) LLM-guided visual understanding in some aspects (e.g., telling scientific facts and relationships to enhance the logic in CV [18], [19], and (v) multimodal between named people), these pioneering studies dialog to facilitate vision-language interaction [11], [20].
SECAD-Net: Self-Supervised CAD Reconstruction by Learning Sketch-Extrude Operations
Li, Pu, Guo, Jianwei, Zhang, Xiaopeng, Yan, Dong-ming
Reverse engineering CAD models from raw geometry is a classic but strenuous research problem. Previous learning-based methods rely heavily on labels due to the supervised design patterns or reconstruct CAD shapes that are not easily editable. In this work, we introduce SECAD-Net, an end-to-end neural network aimed at reconstructing compact and easy-to-edit CAD models in a self-supervised manner. Drawing inspiration from the modeling language that is most commonly used in modern CAD software, we propose to learn 2D sketches and 3D extrusion parameters from raw shapes, from which a set of extrusion cylinders can be generated by extruding each sketch from a 2D plane into a 3D body. By incorporating the Boolean operation (i.e., union), these cylinders can be combined to closely approximate the target geometry. We advocate the use of implicit fields for sketch representation, which allows for creating CAD variations by interpolating latent codes in the sketch latent space. Extensive experiments on both ABC and Fusion 360 datasets demonstrate the effectiveness of our method, and show superiority over state-of-the-art alternatives including the closely related method for supervised CAD reconstruction. We further apply our approach to CAD editing and single-view CAD reconstruction. The code is released at https://github.com/BunnySoCrazy/SECAD-Net.