Goto

Collaborating Authors

 Zhang, Xiaojian


Causality-informed Rapid Post-hurricane Building Damage Detection in Large Scale from InSAR Imagery

arXiv.org Artificial Intelligence

Timely and accurate assessment of hurricane-induced building damage is crucial for effective post-hurricane response and recovery efforts. Recently, remote sensing technologies provide large-scale optical or Interferometric Synthetic Aperture Radar (InSAR) imagery data immediately after a disastrous event, which can be readily used to conduct rapid building damage assessment. Compared to optical satellite imageries, the Synthetic Aperture Radar can penetrate cloud cover and provide more complete spatial coverage of damaged zones in various weather conditions. However, these InSAR imageries often contain highly noisy and mixed signals induced by co-occurring or co-located building damage, flood, flood/wind-induced vegetation changes, as well as anthropogenic activities, making it challenging to extract accurate building damage information. In this paper, we introduced an approach for rapid post-hurricane building damage detection from InSAR imagery. This approach encoded complex causal dependencies among wind, flood, building damage, and InSAR imagery using a holistic causal Bayesian network. Based on the causal Bayesian network, we further jointly inferred the large-scale unobserved building damage by fusing the information from InSAR imagery with prior physical models of flood and wind, without the need for ground truth labels. Furthermore, we validated our estimation results in a real-world devastating hurricane -- the 2022 Hurricane Ian. We gathered and annotated building damage ground truth data in Lee County, Florida, and compared the introduced method's estimation results with the ground truth and benchmarked it against state-of-the-art models to assess the effectiveness of our proposed method. Results show that our method achieves rapid and accurate detection of building damage, with significantly reduced processing time compared to traditional manual inspection methods.


Travel Demand Forecasting: A Fair AI Approach

arXiv.org Artificial Intelligence

Artificial Intelligence (AI) and machine learning have been increasingly adopted for travel demand forecasting. The AI-based travel demand forecasting models, though generate accurate predictions, may produce prediction biases and raise fairness issues. Using such biased models for decision-making may lead to transportation policies that exacerbate social inequalities. However, limited studies have been focused on addressing the fairness issues of these models. Therefore, in this study, we propose a novel methodology to develop fairness-aware, highly-accurate travel demand forecasting models. Particularly, the proposed methodology can enhance the fairness of AI models for multiple protected attributes (such as race and income) simultaneously. Specifically, we introduce a new fairness regularization term, which is explicitly designed to measure the correlation between prediction accuracy and multiple protected attributes, into the loss function of the travel demand forecasting model. We conduct two case studies to evaluate the performance of the proposed methodology using real-world ridesourcing-trip data in Chicago, IL and Austin, TX, respectively. Results highlight that our proposed methodology can effectively enhance fairness for multiple protected attributes while preserving prediction accuracy. Additionally, we have compared our methodology with three state-of-the-art methods that adopt the regularization term approach, and the results demonstrate that our approach significantly outperforms them in both preserving prediction accuracy and enhancing fairness. This study can provide transportation professionals with a new tool to achieve fair and accurate travel demand forecasting.


Spiral Complete Coverage Path Planning Based on Conformal Slit Mapping in Multi-connected Domains

arXiv.org Artificial Intelligence

Generating a smooth and shorter spiral complete coverage path in a multi-connected domain is an important research area in robotic cavity machining. Traditional spiral path planning methods in multi-connected domains involve a subregion division procedure; a deformed spiral path is incorporated within each subregion, and these paths within the subregions are interconnected with bridges. In intricate domains with abundant voids and irregular boundaries, the added subregion boundaries increase the path avoidance requirements. This results in excessive bridging and necessitates longer uneven-density spirals to achieve complete subregion coverage. Considering that conformal slit mapping can transform multi-connected regions into regular disks or annuluses without subregion division, this paper presents a novel spiral complete coverage path planning method by conformal slit mapping. Firstly, a slit mapping calculation technique is proposed for segmented cubic spline boundaries with corners. Then, a spiral path spacing control method is developed based on the maximum inscribed circle radius between adjacent conformal slit mapping iso-parameters. Lastly, the spiral path is derived by offsetting iso-parameters. The complexity and applicability of the proposed method are comprehensively analyzed across various boundary scenarios. Meanwhile, two cavities milling experiments are conducted to compare the new method with conventional spiral complete coverage path methods. The comparation indicate that the new path meets the requirement for complete coverage in cavity machining while reducing path length and machining time by 12.70% and 12.34%, respectively.


ICN: Interactive Convolutional Network for Forecasting Travel Demand of Shared Micromobility

arXiv.org Artificial Intelligence

Accurate shared micromobility demand predictions are essential for transportation planning and management. Although deep learning models provide powerful tools to deal with demand prediction problems, studies on forecasting highly-accurate spatiotemporal shared micromobility demand are still lacking. This paper proposes a deep learning model named Interactive Convolutional Network (ICN) to forecast spatiotemporal travel demand for shared micromobility. The proposed model develops a novel channel dilation method by utilizing multi-dimensional spatial information (i.e., demographics, functionality, and transportation supply) based on travel behavior knowledge for building the deep learning model. We use the convolution operation to process the dilated tensor to simultaneously capture temporal and spatial dependencies. Based on a binary-tree-structured architecture and interactive convolution, the ICN model extracts features at different temporal resolutions, and then generates predictions using a fully-connected layer. The proposed model is evaluated for two real-world case studies in Chicago, IL, and Austin, TX. The results show that the ICN model significantly outperforms all the selected benchmark models. The model predictions can help the micromobility operators develop optimal vehicle rebalancing schemes and guide cities to better manage the shared micromobility system.


Situational-Aware Multi-Graph Convolutional Recurrent Network (SA-MGCRN) for Travel Demand Forecasting During Wildfires

arXiv.org Artificial Intelligence

Real-time forecasting of travel demand during wildfire evacuations is crucial for emergency managers and transportation planners to make timely and better-informed decisions. However, few studies focus on accurate travel demand forecasting in large-scale emergency evacuations. Therefore, this study develops and tests a new methodological framework for modeling trip generation in wildfire evacuations by using (a) large-scale GPS data generated by mobile devices and (b) state-of-the-art AI technologies. The proposed methodology aims at forecasting evacuation trips and other types of trips. Based on the travel demand inferred from the GPS data, we develop a new deep learning model, i.e., Situational-Aware Multi-Graph Convolutional Recurrent Network (SA-MGCRN), along with a model updating scheme to achieve real-time forecasting of travel demand during wildfire evacuations. The proposed methodological framework is tested in this study for a real-world case study: the 2019 Kincade Fire in Sonoma County, CA. The results show that SA-MGCRN significantly outperforms all the selected state-of-the-art benchmarks in terms of prediction performance. Our finding suggests that the most important model components of SA-MGCRN are evacuation order/warning information, proximity to fire, and population change, which are consistent with behavioral theories and empirical findings.


Examining spatial heterogeneity of ridesourcing demand determinants with explainable machine learning

arXiv.org Artificial Intelligence

The growing significance of ridesourcing services in recent years suggests a need to examine the key determinants of ridesourcing demand. However, little is known regarding the nonlinear effects and spatial heterogeneity of ridesourcing demand determinants. This study applies an explainable-machine-learning-based analytical framework to identify the key factors that shape ridesourcing demand and to explore their nonlinear associations across various spatial contexts (airport, downtown, and neighborhood). We use the ridesourcing-trip data in Chicago for empirical analysis. The results reveal that the importance of built environment varies across spatial contexts, and it collectively contributes the largest importance in predicting ridesourcing demand for airport trips. Additionally, the nonlinear effects of built environment on ridesourcing demand show strong spatial variations. Ridesourcing demand is usually most responsive to the built environment changes for downtown trips, followed by neighborhood trips and airport trips. These findings offer transportation professionals nuanced insights for managing ridesourcing services.