Zhang, Xiao-Lei
DualSpec: Text-to-spatial-audio Generation via Dual-Spectrogram Guided Diffusion Model
Zhao, Lei, Chen, Sizhou, Feng, Linfeng, Zhang, Xiao-Lei, Li, Xuelong
--T ext-to-audio (TT A), which generates audio signals from textual descriptions, has received huge attention in recent years. However, recent works focused on text to monaural audio only. As we know, spatial audio provides more immersive auditory experience than monaural audio, e.g. in virtual reality. T o address this issue, we propose a text-to-spatial-audio (TTSA) generation framework named DualSpec.Specifically, it first trains variational autoencoders (V AEs) for extracting the latent acoustic representations from sound event audio. Then, given text that describes sound events and event directions, the proposed method uses the encoder of a pretrained large language model to transform the text into text features. Finally, it trains a diffusion model from the latent acoustic representations and text features for the spatial audio generation. In the inference stage, only the text description is needed to generate spatial audio. Particularly, to improve the synthesis quality and azimuth accuracy of the spatial sound events simultaneously, we propose to use two kinds of acoustic features. One is the Mel spectrograms which is good for improving the synthesis quality, and the other is the short-time Fourier transform spectrograms which is good at improving the azimuth accuracy. We provide a pipeline of constructing spatial audio dataset with text prompts, for the training of the V AEs and diffusion model. We also introduce new spatial-aware evaluation metrics to quantify the azimuth errors of the generated spatial audio recordings. Experimental results demonstrate that the proposed method can generate spatial audio with high directional and event consistency.
UniForm: A Unified Diffusion Transformer for Audio-Video Generation
Zhao, Lei, Feng, Linfeng, Ge, Dongxu, Yi, Fangqiu, Zhang, Chi, Zhang, Xiao-Lei, Li, Xuelong
As a natural multimodal content, audible video delivers an immersive sensory experience. Consequently, audio-video generation systems have substantial potential. However, existing diffusion-based studies mainly employ relatively independent modules for generating each modality, which lack exploration of shared-weight generative modules. This approach may under-use the intrinsic correlations between audio and visual modalities, potentially resulting in sub-optimal generation quality. To address this, we propose UniForm, a unified diffusion transformer designed to enhance cross-modal consistency. By concatenating auditory and visual information, UniForm learns to generate audio and video simultaneously within a unified latent space, facilitating the creation of high-quality and well-aligned audio-visual pairs. Extensive experiments demonstrate the superior performance of our method in joint audio-video generation, audio-guided video generation, and video-guided audio generation tasks. Our demos are available at https://uniform-t2av.github.io/.
LMD: A Learnable Mask Network to Detect Adversarial Examples for Speaker Verification
Chen, Xing, Wang, Jie, Zhang, Xiao-Lei, Zhang, Wei-Qiang, Yang, Kunde
Although the security of automatic speaker verification (ASV) is seriously threatened by recently emerged adversarial attacks, there have been some countermeasures to alleviate the threat. However, many defense approaches not only require the prior knowledge of the attackers but also possess weak interpretability. To address this issue, in this paper, we propose an attacker-independent and interpretable method, named learnable mask detector (LMD), to separate adversarial examples from the genuine ones. It utilizes score variation as an indicator to detect adversarial examples, where the score variation is the absolute discrepancy between the ASV scores of an original audio recording and its transformed audio synthesized from its masked complex spectrogram. A core component of the score variation detector is to generate the masked spectrogram by a neural network. The neural network needs only genuine examples for training, which makes it an attacker-independent approach. Its interpretability lies that the neural network is trained to minimize the score variation of the targeted ASV, and maximize the number of the masked spectrogram bins of the genuine training examples. Its foundation is based on the observation that, masking out the vast majority of the spectrogram bins with little speaker information will inevitably introduce a large score variation to the adversarial example, and a small score variation to the genuine example. Experimental results with 12 attackers and two representative ASV systems show that our proposed method outperforms five state-of-the-art baselines. The extensive experimental results can also be a benchmark for the detection-based ASV defenses.
Optimizing Quantum Federated Learning Based on Federated Quantum Natural Gradient Descent
Qi, Jun, Zhang, Xiao-Lei, Tejedor, Javier
Quantum federated learning (QFL) is a quantum extension of the classical federated learning model across multiple local quantum devices. An efficient optimization algorithm is always expected to minimize the communication overhead among different quantum participants. In this work, we propose an efficient optimization algorithm, namely federated quantum natural gradient descent (FQNGD), and further, apply it to a QFL framework that is composed of a variational quantum circuit (VQC)-based quantum neural networks (QNN). Compared with stochastic gradient descent methods like Adam and Adagrad, the FQNGD algorithm admits much fewer training iterations for the QFL to get converged. Moreover, it can significantly reduce the total communication overhead among local quantum devices. Our experiments on a handwritten digit classification dataset justify the effectiveness of the FQNGD for the QFL framework in terms of a faster convergence rate on the training set and higher accuracy on the test set.
Interpretable Spectrum Transformation Attacks to Speaker Recognition
Yao, Jiadi, Luo, Hong, Zhang, Xiao-Lei
The success of adversarial attacks to speaker recognition is mainly in white-box scenarios. When applying the adversarial voices that are generated by attacking white-box surrogate models to black-box victim models, i.e. \textit{transfer-based} black-box attacks, the transferability of the adversarial voices is not only far from satisfactory, but also lacks interpretable basis. To address these issues, in this paper, we propose a general framework, named spectral transformation attack based on modified discrete cosine transform (STA-MDCT), to improve the transferability of the adversarial voices to a black-box victim model. Specifically, we first apply MDCT to the input voice. Then, we slightly modify the energy of different frequency bands for capturing the salient regions of the adversarial noise in the time-frequency domain that are critical to a successful attack. Unlike existing approaches that operate voices in the time domain, the proposed framework operates voices in the time-frequency domain, which improves the interpretability, transferability, and imperceptibility of the attack. Moreover, it can be implemented with any gradient-based attackers. To utilize the advantage of model ensembling, we not only implement STA-MDCT with a single white-box surrogate model, but also with an ensemble of surrogate models. Finally, we visualize the saliency maps of adversarial voices by the class activation maps (CAM), which offers an interpretable basis to transfer-based attacks in speaker recognition for the first time. Extensive comparison results with five representative attackers show that the CAM visualization clearly explains the effectiveness of STA-MDCT, and the weaknesses of the comparison methods; the proposed method outperforms the comparison methods by a large margin.
Symmetric Saliency-based Adversarial Attack To Speaker Identification
Yao, Jiadi, Chen, Xing, Zhang, Xiao-Lei, Zhang, Wei-Qiang, Yang, Kunde
Adversarial attack approaches to speaker identification either need high computational cost or are not very effective, to our knowledge. To address this issue, in this paper, we propose a novel generation-network-based approach, called symmetric saliency-based encoder-decoder (SSED), to generate adversarial voice examples to speaker identification. It contains two novel components. First, it uses a novel saliency map decoder to learn the importance of speech samples to the decision of a targeted speaker identification system, so as to make the attacker focus on generating artificial noise to the important samples. It also proposes an angular loss function to push the speaker embedding far away from the source speaker. Our experimental results demonstrate that the proposed SSED yields the state-of-the-art performance, i.e. over 97% targeted attack success rate and a signal-to-noise level of over 39 dB on both the open-set and close-set speaker identification tasks, with a low computational cost.
Deep topic modeling by multilayer bootstrap network and lasso
Wang, Jianyu, Zhang, Xiao-Lei
It is originally formulated as a hierarchical generative model: a document is generated from a mixture of topics, and a word in the document is generated by first choosing a topic from a document-specific distribution, and then choosing the word from the topic-specific distribution. The main difficulty of topic modeling is the optimization problem, which is NPhard in the worst case due to the intractability of the posterior inference. Existing methods aim to find approximate solutions to the difficult optimization problem, which falls into the framework of matrix factorization. Matrix factorization based topic modeling maps documents into a low-dimensional semantic space by decomposing the documents into a weighted combination of a set of topic distributions: D CW where D (:,d) represents the d -th document which is a column vector over a set of words with a vocabulary size of v, C (:,g) denotes the g -th topic which is a probability mass function over the vocabulary, and W ( g,d) denotes the probability of the g -th topic in the d -th document.
Multilayer bootstrap networks
Zhang, Xiao-Lei
Multilayer bootstrap network builds a gradually narrowed multilayer nonlinear network from bottom up for unsupervised nonlinear dimensionality reduction. Each layer of the network is a nonparametric density estimator. It consists of a group of k-centroids clusterings. Each clustering randomly selects data points with randomly selected features as its centroids, and learns a one-hot encoder by one-nearest-neighbor optimization. Geometrically, the nonparametric density estimator at each layer projects the input data space to a uniformly-distributed discrete feature space, where the similarity of two data points in the discrete feature space is measured by the number of the nearest centroids they share in common. The multilayer network gradually reduces the nonlinear variations of data from bottom up by building a vast number of hierarchical trees implicitly on the original data space. Theoretically, the estimation error caused by the nonparametric density estimator is proportional to the correlation between the clusterings, both of which are reduced by the randomization steps.
Unsupervised model compression for multilayer bootstrap networks
Zhang, Xiao-Lei
Recently, multilayer bootstrap network (MBN) has demonstrated promising performance in unsupervised dimensionality reduction. It can learn compact representations in standard data sets, i.e. MNIST and RCV1. However, as a bootstrap method, the prediction complexity of MBN is high. In this paper, we propose an unsupervised model compression framework for this general problem of unsupervised bootstrap methods. The framework compresses a large unsupervised bootstrap model into a small model by taking the bootstrap model and its application together as a black box and learning a mapping function from the input of the bootstrap model to the output of the application by a supervised learner. To specialize the framework, we propose a new technique, named compressive MBN. It takes MBN as the unsupervised bootstrap model and deep neural network (DNN) as the supervised learner. Our initial result on MNIST showed that compressive MBN not only maintains the high prediction accuracy of MBN but also is over thousands of times faster than MBN at the prediction stage. Our result suggests that the new technique integrates the effectiveness of MBN on unsupervised learning and the effectiveness and efficiency of DNN on supervised learning together for the effectiveness and efficiency of compressive MBN on unsupervised learning.
Deep Distributed Random Samplings for Supervised Learning: An Alternative to Random Forests?
Zhang, Xiao-Lei
In (\cite{zhang2014nonlinear,zhang2014nonlinear2}), we have viewed machine learning as a coding and dimensionality reduction problem, and further proposed a simple unsupervised dimensionality reduction method, entitled deep distributed random samplings (DDRS). In this paper, we further extend it to supervised learning incrementally. The key idea here is to incorporate label information into the coding process by reformulating that each center in DDRS has multiple output units indicating which class the center belongs to. The supervised learning method seems somewhat similar with random forests (\cite{breiman2001random}), here we emphasize their differences as follows. (i) Each layer of our method considers the relationship between part of the data points in training data with all training data points, while random forests focus on building each decision tree on only part of training data points independently. (ii) Our method builds gradually-narrowed network by sampling less and less data points, while random forests builds gradually-narrowed network by merging subclasses. (iii) Our method is trained more straightforward from bottom layer to top layer, while random forests build each tree from top layer to bottom layer by splitting. (iv) Our method encodes output targets implicitly in sparse codes, while random forests encode output targets by remembering the class attributes of the activated nodes. Therefore, our method is a simpler, more straightforward, and maybe a better alternative choice, though both methods use two very basic elements---randomization and nearest neighbor optimization---as the core. This preprint is used to protect the incremental idea from (\cite{zhang2014nonlinear,zhang2014nonlinear2}). Full empirical evaluation will be announced carefully later.