Goto

Collaborating Authors

 Zhang, Tianyang


MathMistake Checker: A Comprehensive Demonstration for Step-by-Step Math Problem Mistake Finding by Prompt-Guided LLMs

arXiv.org Artificial Intelligence

We propose a novel system, MathMistake Checker, designed to automate step-by-step mistake finding in mathematical problems with lengthy answers through a two-stage process. The system aims to simplify grading, increase efficiency, and enhance learning experiences from a pedagogical perspective. It integrates advanced technologies, including computer vision and the chain-of-thought capabilities of the latest large language models (LLMs). Our system supports open-ended grading without reference answers and promotes personalized learning by providing targeted feedback. We demonstrate its effectiveness across various types of math problems, such as calculation and word problems.


RAG4ITOps: A Supervised Fine-Tunable and Comprehensive RAG Framework for IT Operations and Maintenance

arXiv.org Artificial Intelligence

With the ever-increasing demands on Question Answering (QA) systems for IT operations and maintenance, an efficient and supervised fine-tunable framework is necessary to ensure the data security, private deployment and continuous upgrading. Although Large Language Models (LLMs) have notably improved the open-domain QA's performance, how to efficiently handle enterprise-exclusive corpora and build domain-specific QA systems are still less-studied for industrial applications. In this paper, we propose a general and comprehensive framework based on Retrieval Augmented Generation (RAG) and facilitate the whole business process of establishing QA systems for IT operations and maintenance. In accordance with the prevailing RAG method, our proposed framework, named with RAG4ITOps, composes of two major stages: (1) Models Fine-tuning \& Data Vectorization, and (2) Online QA System Process. At the Stage 1, we leverage a contrastive learning method with two negative sampling strategies to fine-tune the embedding model, and design the instruction templates to fine-tune the LLM with a Retrieval Augmented Fine-Tuning method. At the Stage 2, an efficient process of QA system is built for serving. We collect enterprise-exclusive corpora from the domain of cloud computing, and the extensive experiments show that our method achieves superior results than counterparts on two kinds of QA tasks. Our experiment also provide a case for applying the RAG4ITOps to real-world enterprise-level applications.


S$^2$Mamba: A Spatial-spectral State Space Model for Hyperspectral Image Classification

arXiv.org Artificial Intelligence

Land cover analysis using hyperspectral images (HSI) remains an open problem due to their low spatial resolution and complex spectral information. Recent studies are primarily dedicated to designing Transformer-based architectures for spatial-spectral long-range dependencies modeling, which is computationally expensive with quadratic complexity. Selective structured state space model (Mamba), which is efficient for modeling long-range dependencies with linear complexity, has recently shown promising progress. However, its potential in hyperspectral image processing that requires handling numerous spectral bands has not yet been explored. In this paper, we innovatively propose S$^2$Mamba, a spatial-spectral state space model for hyperspectral image classification, to excavate spatial-spectral contextual features, resulting in more efficient and accurate land cover analysis. In S$^2$Mamba, two selective structured state space models through different dimensions are designed for feature extraction, one for spatial, and the other for spectral, along with a spatial-spectral mixture gate for optimal fusion. More specifically, S$^2$Mamba first captures spatial contextual relations by interacting each pixel with its adjacent through a Patch Cross Scanning module and then explores semantic information from continuous spectral bands through a Bi-directional Spectral Scanning module. Considering the distinct expertise of the two attributes in homogenous and complicated texture scenes, we realize the Spatial-spectral Mixture Gate by a group of learnable matrices, allowing for the adaptive incorporation of representations learned across different dimensions. Extensive experiments conducted on HSI classification benchmarks demonstrate the superiority and prospect of S$^2$Mamba. The code will be available at: https://github.com/PURE-melo/S2Mamba.


Personalized Showcases: Generating Multi-Modal Explanations for Recommendations

arXiv.org Artificial Intelligence

Existing explanation models generate only text for recommendations but still struggle to produce diverse contents. In this paper, to further enrich explanations, we propose a new task named personalized showcases, in which we provide both textual and visual information to explain our recommendations. Specifically, we first select a personalized image set that is the most relevant to a user's interest toward a recommended item. Then, natural language explanations are generated accordingly given our selected images. For this new task, we collect a large-scale dataset from Google Local (i.e.,~maps) and construct a high-quality subset for generating multi-modal explanations. We propose a personalized multi-modal framework which can generate diverse and visually-aligned explanations via contrastive learning. Experiments show that our framework benefits from different modalities as inputs, and is able to produce more diverse and expressive explanations compared to previous methods on a variety of evaluation metrics.


Equality before the Law: Legal Judgment Consistency Analysis for Fairness

arXiv.org Artificial Intelligence

In a legal system, judgment consistency is regarded as one of the most important manifestations of fairness. However, due to the complexity of factual elements that impact sentencing in real-world scenarios, few works have been done on quantitatively measuring judgment consistency towards real-world data. In this paper, we propose an evaluation metric for judgment inconsistency, Legal Inconsistency Coefficient (LInCo), which aims to evaluate inconsistency between data groups divided by specific features (e.g., gender, region, race). We propose to simulate judges from different groups with legal judgment prediction (LJP) models and measure the judicial inconsistency with the disagreement of the judgment results given by LJP models trained on different groups. Experimental results on the synthetic data verify the effectiveness of LInCo. We further employ LInCo to explore the inconsistency in real cases and come to the following observations: (1) Both regional and gender inconsistency exist in the legal system, but gender inconsistency is much less than regional inconsistency; (2) The level of regional inconsistency varies little across different time periods; (3) In general, judicial inconsistency is negatively correlated with the severity of the criminal charges. Besides, we use LInCo to evaluate the performance of several de-bias methods, such as adversarial learning, and find that these mechanisms can effectively help LJP models to avoid suffering from data bias.


Learning Structured Representation for Text Classification via Reinforcement Learning

AAAI Conferences

Representation learning is a fundamental problem in natural language processing. This paper studies how to learn a structured representation for text classification. Unlike most existing representation models that either use no structure or rely on pre-specified structures, we propose a reinforcement learning (RL) method to learn sentence representation by discovering optimized structures automatically. We demonstrate two attempts to build structured representation: Information Distilled LSTM (ID-LSTM) and Hierarchically Structured LSTM (HS-LSTM). ID-LSTM selects only important, task-relevant words, and HS-LSTM discovers phrase structures in a sentence. Structure discovery in the two representation models is formulated as a sequential decision problem: current decision of structure discovery affects following decisions, which can be addressed by policy gradient RL. Results show that our method can learn task-friendly representations by identifying important words or task-relevant structures without explicit structure annotations, and thus yields competitive performance.


Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory

AAAI Conferences

Perception and expression of emotion are key factors to the success of dialogue systems or conversational agents. However, this problem has not been studied in large-scale conversation generation so far. In this paper, we propose Emotional Chatting Machine (ECM) that can generate appropriate responses not only in content (relevant and grammatical) but also in emotion (emotionally consistent). To the best of our knowledge, this is the first work that addresses the emotion factor in large-scale conversation generation. ECM addresses the factor using three new mechanisms that respectively (1) models the high-level abstraction of emotion expressions by embedding emotion categories, (2) captures the change of implicit internal emotion states, and (3) uses explicit emotion expressions with an external emotion vocabulary. Experiments show that the proposed model can generate responses appropriate not only in content but also in emotion.


Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory

arXiv.org Artificial Intelligence

Perception and expression of emotion are key factors to the success of dialogue systems or conversational agents. However, this problem has not been studied in large-scale conversation generation so far. In this paper, we propose Emotional Chatting Machine (ECM) that can generate appropriate responses not only in content (relevant and grammatical) but also in emotion (emotionally consistent). To the best of our knowledge, this is the first work that addresses the emotion factor in large-scale conversation generation. ECM addresses the factor using three new mechanisms that respectively (1) models the high-level abstraction of emotion expressions by embedding emotion categories, (2) captures the change of implicit internal emotion states, and (3) uses explicit emotion expressions with an external emotion vocabulary. Experiments show that the proposed model can generate responses appropriate not only in content but also in emotion.


Perceiving Group Themes from Collective Social and Behavioral Information

AAAI Conferences

Collective social and behavioral information commonly exists in nature. There is a widespread intuitive sense that the characteristics of these social and behavioral information are to some extend related to the themes (or semantics) of the activities or targets. In this paper, we explicitly validate the interplay of collective social behavioral information and group themes using a large scale real dataset of online groups, and demonstrate the possibility of perceiving group themes from collective social and behavioral information. We propose a REgularized miXEd Regression (REXER) model based on matrix factorization to infer hierarchical semantics (including both group category and group labels) from collective social and behavioral information of group members. We extensively evaluate the proposed method in a large scale real online group dataset. For the prediction of group themes, the proposed REXER achieves satisfactory performances in various criterions. More specifically, we can predict the category of a group (among 6 categories) purely based on the collective social and behavioral information of the group with the Precision@1 to be 55.16% , without any assistance from group labels or conversation contents. We also show, perhaps counterintuitively, that the collective social and behavioral information is more reliable than the titles and labels of groups for inferring the group categories.