Goto

Collaborating Authors

 Zhang, Song


ALPS: An Auto-Labeling and Pre-training Scheme for Remote Sensing Segmentation With Segment Anything Model

arXiv.org Artificial Intelligence

In the fast-growing field of Remote Sensing (RS) image analysis, the gap between massive unlabeled datasets and the ability to fully utilize these datasets for advanced RS analytics presents a significant challenge. To fill the gap, our work introduces an innovative auto-labeling framework named ALPS (Automatic Labeling for Pre-training in Segmentation), leveraging the Segment Anything Model (SAM) to predict precise pseudo-labels for RS images without necessitating prior annotations or additional prompts. The proposed pipeline significantly reduces the labor and resource demands traditionally associated with annotating RS datasets. By constructing two comprehensive pseudo-labeled RS datasets via ALPS for pre-training purposes, our approach enhances the performance of downstream tasks across various benchmarks, including iSAID and ISPRS Potsdam. Experiments demonstrate the effectiveness of our framework, showcasing its ability to generalize well across multiple tasks even under the scarcity of extensively annotated datasets, offering a scalable solution to automatic segmentation and annotation challenges in the field. In addition, the proposed a pipeline is flexible and can be applied to medical image segmentation, remarkably boosting the performance. Note that ALPS utilizes pre-trained SAM to semi-automatically annotate RS images without additional manual annotations. Though every component in the pipeline has bee well explored, integrating clustering algorithms with SAM and novel pseudo-label alignment significantly enhances RS segmentation, as an off-the-shelf tool for pre-training data preparation. Our source code is available at: https://github.com/StriveZs/ALPS.


Semantic Is Enough: Only Semantic Information For NeRF Reconstruction

arXiv.org Artificial Intelligence

Recent research that combines implicit 3D representation with semantic information, like Semantic-NeRF, has proven that NeRF model could perform excellently in rendering 3D structures with semantic labels. This research aims to extend the Semantic Neural Radiance Fields (Semantic-NeRF) model by focusing solely on semantic output and removing the RGB output component. We reformulate the model and its training procedure to leverage only the cross-entropy loss between the model semantic output and the ground truth semantic images, removing the colour data traditionally used in the original Semantic-NeRF approach. We then conduct a series of identical experiments using the original and the modified Semantic-NeRF model. Our primary objective is to obverse the impact of this modification on the model performance by Semantic-NeRF, focusing on tasks such as scene understanding, object detection, and segmentation. The results offer valuable insights into the new way of rendering the scenes and provide an avenue for further research and development in semantic-focused 3D scene understanding.


TiG-BEV: Multi-view BEV 3D Object Detection via Target Inner-Geometry Learning

arXiv.org Artificial Intelligence

To achieve accurate and low-cost 3D object detection, existing methods propose to benefit camera-based multi-view detectors with spatial cues provided by the LiDAR modality, e.g., dense depth supervision and bird-eye-view (BEV) feature distillation. However, they directly conduct point-to-point mimicking from LiDAR to camera, which neglects the inner-geometry of foreground targets and suffers from the modal gap between 2D-3D features. In this paper, we propose the learning scheme of Target Inner-Geometry from the LiDAR modality into camera-based BEV detectors for both dense depth and BEV features, termed as TiG-BEV. First, we introduce an inner-depth supervision module to learn the low-level relative depth relations between different foreground pixels. This enables the camera-based detector to better understand the object-wise spatial structures. Second, we design an inner-feature BEV distillation module to imitate the high-level semantics of different keypoints within foreground targets. To further alleviate the BEV feature gap between two modalities, we adopt both inter-channel and inter-keypoint distillation for feature-similarity modeling. With our target inner-geometry distillation, TiG-BEV can effectively boost BEVDepth by +2.3% NDS and +2.4% mAP, along with BEVDet by +9.1% NDS and +10.3% mAP on nuScenes val set. Code will be available at https://github.com/ADLab3Ds/TiG-BEV.


Self-Supervised Learning Aided Class-Incremental Lifelong Learning

arXiv.org Machine Learning

Lifelong or continual learning remains to be a challenge for artificial neural network, as it is required to be both stable for preservation of old knowledge and plastic for acquisition of new knowledge. It is common to see previous experience get overwritten, which leads to the well-known issue of catastrophic forgetting, especially in the scenario of class-incremental learning (Class-IL). Recently, many lifelong learning methods have been proposed to avoid catastrophic forgetting. However, models which learn without replay of the input data, would encounter another problem which has been ignored, and we refer to it as prior information loss (PIL). In training procedure of Class-IL, as the model has no knowledge about following tasks, it would only extract features necessary for tasks learned so far, whose information is insufficient for joint classification. In this paper, our empirical results on several image datasets show that PIL limits the performance of current state-of-the-art method for Class-IL, the orthogonal weights modification (OWM) algorithm. Furthermore, we propose to combine self-supervised learning, which can provide effective representations without requiring labels, with Class-IL to partly get around this problem. Experiments show superiority of proposed method to OWM, as well as other strong baselines.


Generative Feature Replay with Orthogonal Weight Modification for Continual Learning

arXiv.org Machine Learning

The ability of intelligent agents to learn and remember multiple tasks sequentially is crucial to achieving artificial general intelligence. Many continual learning (CL) methods have been proposed to overcome catastrophic forgetting which results from non i.i.d data in the sequential learning of neural networks. In this paper we focus on class incremental learning, a challenging CL scenario. For this scenario, generative replay is a promising strategy which generates and replays pseudo data for previous tasks to alleviate catastrophic forgetting. However, it is hard to train a generative model continually for relatively complex data. Based on recently proposed orthogonal weight modification (OWM) algorithm which can approximately keep previously learned feature invariant when learning new tasks, we propose to 1) replay penultimate layer feature with a generative model; 2) leverage a self-supervised auxiliary task to further enhance the stability of feature. Empirical results on several datasets show our method always achieves substantial improvement over powerful OWM while conventional generative replay always results in a negative effect. Meanwhile our method beats several strong baselines including one based on real data storage. In addition, we conduct experiments to study why our method is effective.


Deep learning for smart fish farming: applications, opportunities and challenges

arXiv.org Machine Learning

With the rapid emergence of deep learning (DL) technology, it has been successfully used in various fields including aquaculture. This change can create new opportunities and a series of challenges for information and data processing in smart fish farming. This paper focuses on the applications of DL in aquaculture, including live fish identification, species classification, behavioral analysis, feeding decision-making, size or biomass estimation, water quality prediction. In addition, the technical details of DL methods applied to smart fish farming are also analyzed, including data, algorithms, computing power, and performance. The results of this review show that the most significant contribution of DL is the ability to automatically extract features. However, challenges still exist; DL is still in an era of weak artificial intelligence. A large number of labeled data are needed for training, which has become a bottleneck restricting further DL applications in aquaculture. Nevertheless, DL still offers breakthroughs in the handling of complex data in aquaculture. In brief, our purpose is to provide researchers and practitioners with a better understanding of the current state of the art of DL in aquaculture, which can provide strong support for the implementation of smart fish farming.