Goto

Collaborating Authors

 Zhang, Shengyuan


Research and Design on Intelligent Recognition of Unordered Targets for Robots Based on Reinforcement Learning

arXiv.org Artificial Intelligence

In the field of robot target recognition research driven by artificial intelligence (AI), factors such as the disordered distribution of targets, the complexity of the environment, the massive scale of data, and noise interference have significantly restricted the improvement of target recognition accuracy. Against the backdrop of the continuous iteration and upgrading of current AI technologies, to meet the demand for accurate recognition of disordered targets by intelligent robots in complex and changeable scenarios, this study innovatively proposes an AI - based intelligent robot disordered target recognition method using reinforcement learning. This method processes the collected target images with the bilateral filtering algorithm, decomposing them into low - illumination images and reflection images. Subsequently, it adopts differentiated AI strategies, compressing the illumination images and enhancing the reflection images respectively, and then fuses the two parts of images to generate a new image. On this basis, this study deeply integrates deep learning, a core AI technology, with the reinforcement learning algorithm. The enhanced target images are input into a deep reinforcement learning model for training, ultimately enabling the AI - based intelligent robot to efficiently recognize disordered targets. Experimental results show that the proposed method can not only significantly improve the quality of target images but also enable the AI - based intelligent robot to complete the recognition task of disordered targets with higher efficiency and accuracy, demonstrating extremely high application value and broad development prospects in the field of AI robots.


Reducing Spatial Fitting Error in Distillation of Denoising Diffusion Models

arXiv.org Artificial Intelligence

Denoising Diffusion models have exhibited remarkable capabilities in image generation. However, generating high-quality samples requires a large number of iterations. Knowledge distillation for diffusion models is an effective method to address this limitation with a shortened sampling process but causes degraded generative quality. Based on our analysis with bias-variance decomposition and experimental observations, we attribute the degradation to the spatial fitting error occurring in the training of both the teacher and student model. Accordingly, we propose $\textbf{S}$patial $\textbf{F}$itting-$\textbf{E}$rror $\textbf{R}$eduction $\textbf{D}$istillation model ($\textbf{SFERD}$). SFERD utilizes attention guidance from the teacher model and a designed semantic gradient predictor to reduce the student's fitting error. Empirically, our proposed model facilitates high-quality sample generation in a few function evaluations. We achieve an FID of 5.31 on CIFAR-10 and 9.39 on ImageNet 64$\times$64 with only one step, outperforming existing diffusion methods. Our study provides a new perspective on diffusion distillation by highlighting the intrinsic denoising ability of models. Project link: \url{https://github.com/Sainzerjj/SFERD}.