Zhang, Shengchuan
Evolving High-Quality Rendering and Reconstruction in a Unified Framework with Contribution-Adaptive Regularization
Shen, You, Zhang, Zhipeng, Li, Xinyang, Qu, Yansong, Lin, Yu, Zhang, Shengchuan, Cao, Liujuan
Representing 3D scenes from multiview images is a core challenge in computer vision and graphics, which requires both precise rendering and accurate reconstruction. Recently, 3D Gaussian Splatting (3DGS) has garnered significant attention for its high-quality rendering and fast inference speed. Yet, due to the unstructured and irregular nature of Gaussian point clouds, ensuring accurate geometry reconstruction remains difficult. Existing methods primarily focus on geometry regularization, with common approaches including primitive-based and dual-model frameworks. However, the former suffers from inherent conflicts between rendering and reconstruction, while the latter is computationally and storage-intensive. To address these challenges, we propose CarGS, a unified model leveraging Contribution-adaptive regularization to achieve simultaneous, high-quality rendering and surface reconstruction. The essence of our framework is learning adaptive contribution for Gaussian primitives by squeezing the knowledge from geometry regularization into a compact MLP. Additionally, we introduce a geometry-guided densification strategy with clues from both normals and Signed Distance Fields (SDF) to improve the capability of capturing high-frequency details. Our design improves the mutual learning of the two tasks, meanwhile its unified structure does not require separate models as in dual-model based approaches, guaranteeing efficiency. Extensive experiments demonstrate the ability to achieve state-of-the-art (SOTA) results in both rendering fidelity and reconstruction accuracy while maintaining real-time speed and minimal storage size.
HRSAM: Efficiently Segment Anything in High-Resolution Images
Huang, You, Lai, Wenbin, Ji, Jiayi, Cao, Liujuan, Zhang, Shengchuan, Ji, Rongrong
The Segment Anything Model (SAM) has significantly advanced interactive segmentation but struggles with high-resolution images crucial for high-precision segmentation. This is primarily due to the quadratic space complexity of SAM-implemented attention and the length extrapolation issue in common global attention. This study proposes HRSAM that integrates Flash Attention and incorporates Plain, Shifted and newly proposed Cycle-scan Window (PSCWin) attention to address these issues. The shifted window attention is redesigned with padding to maintain consistent window sizes, enabling effective length extrapolation. The cycle-scan window attention adopts the recently developed State Space Models (SSMs) to ensure global information exchange with minimal computational overhead. Such window-based attention allows HRSAM to perform effective attention computations on scaled input images while maintaining low latency. Moreover, we further propose HRSAM++ that additionally employs a multi-scale strategy to enhance HRSAM's performance. The experiments on the high-precision segmentation datasets HQSeg44K and DAVIS show that high-resolution inputs enable the SAM-distilled HRSAM models to outperform the teacher model while maintaining lower latency. Compared to the SOTAs, HRSAM achieves a 1.56 improvement in interactive segmentation's NoC95 metric with only 31% of the latency. HRSAM++ further enhances the performance, achieving a 1.63 improvement in NoC95 with just 38% of the latency.
Cantor: Inspiring Multimodal Chain-of-Thought of MLLM
Gao, Timin, Chen, Peixian, Zhang, Mengdan, Fu, Chaoyou, Shen, Yunhang, Zhang, Yan, Zhang, Shengchuan, Zheng, Xiawu, Sun, Xing, Cao, Liujuan, Ji, Rongrong
With the advent of large language models(LLMs) enhanced by the chain-of-thought(CoT) methodology, visual reasoning problem is usually decomposed into manageable sub-tasks and tackled sequentially with various external tools. However, such a paradigm faces the challenge of the potential "determining hallucinations" in decision-making due to insufficient visual information and the limitation of low-level perception tools that fail to provide abstract summaries necessary for comprehensive reasoning. We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks. This paper delves into the realm of multimodal CoT to solve intricate visual reasoning tasks with multimodal large language models(MLLMs) and their cognitive capability. To this end, we propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture. Cantor first acts as a decision generator and integrates visual inputs to analyze the image and problem, ensuring a closer alignment with the actual context. Furthermore, Cantor leverages the advanced cognitive functions of MLLMs to perform as multifaceted experts for deriving higher-level information, enhancing the CoT generation process. Our extensive experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance across two complex visual reasoning datasets, without necessitating fine-tuning or ground-truth rationales. Project Page: https://ggg0919.github.io/cantor/ .