Goto

Collaborating Authors

 Zhang, Shen


Samsung Research China-Beijing at SemEval-2024 Task 3: A multi-stage framework for Emotion-Cause Pair Extraction in Conversations

arXiv.org Artificial Intelligence

In human-computer interaction, it is crucial for agents to respond to human by understanding their emotions. Unraveling the causes of emotions is more challenging. A new task named Multimodal Emotion-Cause Pair Extraction in Conversations is responsible for recognizing emotion and identifying causal expressions. In this study, we propose a multi-stage framework to generate emotion and extract the emotion causal pairs given the target emotion. In the first stage, Llama-2-based InstructERC is utilized to extract the emotion category of each utterance in a conversation. After emotion recognition, a two-stream attention model is employed to extract the emotion causal pairs given the target emotion for subtask 2 while MuTEC is employed to extract causal span for subtask 1. Our approach achieved first place for both of the two subtasks in the competition.


Artificial Intelligence in Electric Machine Drives: Advances and Trends

arXiv.org Artificial Intelligence

This review paper systematically summarizes the existing literature on applying classical AI techniques and advanced deep learning algorithms to electric machine drives. It is anticipated that with the rapid progress in deep learning models and embedded hardware platforms, AI-based data-driven approaches will become increasingly popular for the automated high-performance control of electric machines. Additionally, this paper also provides some outlook towards promoting its widespread application in the industry, such as implementing advanced RL algorithms with good domain adaptation and transfer learning capabilities and deploying them onto low-cost SoC FPGA devices.


Few-Shot Bearing Anomaly Detection Based on Model-Agnostic Meta-Learning

arXiv.org Machine Learning

The rapid development of artificial intelligence and deep learning technology has provided many opportunities to further enhance the safety, stability, and accuracy of industrial Cyber-Physical Systems (CPS). As indispensable components to many mission-critical CPS assets and equipment, mechanical bearings need to be monitored to identify any trace of abnormal conditions. Most of the data-driven approaches applied to bearing anomaly detection up-to-date are trained using a large amount of fault data collected a priori. In many practical applications, however, it can be unsafe and time-consuming to collect sufficient data samples for each fault category, making it challenging to train a robust classifier. In this paper, we propose a few-shot learning approach for bearing anomaly detection based on model-agnostic meta-learning (MAML), which targets for training an effective fault classifier using limited data. In addition, it can leverage the training data and learn to identify new fault scenarios more efficiently. Case studies on the generalization to new artificial faults show that the proposed method achieves an overall accuracy up to 25% higher than a Siamese-network-based benchmark study. Finally, the robustness of the generalization capability of MAML is further validated by case studies of applying the algorithm to identify real bearing damages using data from artificial damages.


Machine Learning and Deep Learning Algorithms for Bearing Fault Diagnostics - A Comprehensive Review

arXiv.org Machine Learning

In this survey paper, we systematically summarize the current literature on studies that apply machine learning (ML) and data mining techniques to bearing fault diagnostics. Conventional ML methods, including artificial neural network (ANN), principal component analysis (PCA), support vector machines (SVM), etc., have been successfully applied to detecting and categorizing bearing faults since the last decade, while the application of deep learning (DL) methods has sparked great interest in both the industry and academia in the last five years. In this paper, we will first review the conventional ML methods, before taking a deep dive into the latest developments in DL algorithms for bearing fault applications. Specifically, the superiority of the DL based methods over the conventional ML methods are analyzed in terms of metrics directly related to fault feature extraction and classifier performances; the new functionalities offered by DL techniques that cannot be accomplished before are also summarized. In addition, to obtain a more intuitive insight, a comparative study is performed on the classifier performance and accuracy for a number of papers utilizing the open source Case Western Reserve University (CWRU) bearing data set. Finally, based on the nature of the time-series 1-D data obtained from sensors monitoring the bearing conditions, recommendations and suggestions are provided to applying DL algorithms on bearing fault diagnostics based on specific applications, as well as future research directions to further improve its performance.