Zhang, Ruixiong
Human-In-the-Loop Software Development Agents
Takerngsaksiri, Wannita, Pasuksmit, Jirat, Thongtanunam, Patanamon, Tantithamthavorn, Chakkrit, Zhang, Ruixiong, Jiang, Fan, Li, Jing, Cook, Evan, Chen, Kun, Wu, Ming
Recently, Large Language Models (LLMs)-based multi-agent paradigms for software engineering are introduced to automatically resolve software development tasks (e.g., from a given issue to source code). However, existing work is evaluated based on historical benchmark datasets, rarely considers human feedback at each stage of the automated software development process, and has not been deployed in practice. In this paper, we introduce a Human-in-the-loop LLM-based Agents framework (HULA) for software development that allows software engineers to refine and guide LLMs when generating coding plans and source code for a given task. We design, implement, and deploy the HULA framework into Atlassian JIRA for internal uses. Through a multi-stage evaluation of the HULA framework, Atlassian software engineers perceive that HULA can minimize the overall development time and effort, especially in initiating a coding plan and writing code for straightforward tasks. On the other hand, challenges around code quality remain a concern in some cases. We draw lessons learned and discuss opportunities for future work, which will pave the way for the advancement of LLM-based agents in software development.
DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies
Song, Shuaiwen Leon, Kruft, Bonnie, Zhang, Minjia, Li, Conglong, Chen, Shiyang, Zhang, Chengming, Tanaka, Masahiro, Wu, Xiaoxia, Rasley, Jeff, Awan, Ammar Ahmad, Holmes, Connor, Cai, Martin, Ghanem, Adam, Zhou, Zhongzhu, He, Yuxiong, Luferenko, Pete, Kumar, Divya, Weyn, Jonathan, Zhang, Ruixiong, Klocek, Sylwester, Vragov, Volodymyr, AlQuraishi, Mohammed, Ahdritz, Gustaf, Floristean, Christina, Negri, Cristina, Kotamarthi, Rao, Vishwanath, Venkatram, Ramanathan, Arvind, Foreman, Sam, Hippe, Kyle, Arcomano, Troy, Maulik, Romit, Zvyagin, Maxim, Brace, Alexander, Zhang, Bin, Bohorquez, Cindy Orozco, Clyde, Austin, Kale, Bharat, Perez-Rivera, Danilo, Ma, Heng, Mann, Carla M., Irvin, Michael, Pauloski, J. Gregory, Ward, Logan, Hayot, Valerie, Emani, Murali, Xie, Zhen, Lin, Diangen, Shukla, Maulik, Foster, Ian, Davis, James J., Papka, Michael E., Brettin, Thomas, Balaprakash, Prasanna, Tourassi, Gina, Gounley, John, Hanson, Heidi, Potok, Thomas E, Pasini, Massimiliano Lupo, Evans, Kate, Lu, Dan, Lunga, Dalton, Yin, Junqi, Dash, Sajal, Wang, Feiyi, Shankar, Mallikarjun, Lyngaas, Isaac, Wang, Xiao, Cong, Guojing, Zhang, Pei, Fan, Ming, Liu, Siyan, Hoisie, Adolfy, Yoo, Shinjae, Ren, Yihui, Tang, William, Felker, Kyle, Svyatkovskiy, Alexey, Liu, Hang, Aji, Ashwin, Dalton, Angela, Schulte, Michael, Schulz, Karl, Deng, Yuntian, Nie, Weili, Romero, Josh, Dallago, Christian, Vahdat, Arash, Xiao, Chaowei, Gibbs, Thomas, Anandkumar, Anima, Stevens, Rick
In the upcoming decade, deep learning may revolutionize the natural sciences, enhancing our capacity to model and predict natural occurrences. This could herald a new era of scientific exploration, bringing significant advancements across sectors from drug development to renewable energy. To answer this call, we present DeepSpeed4Science initiative (deepspeed4science.ai) which aims to build unique capabilities through AI system technology innovations to help domain experts to unlock today's biggest science mysteries. By leveraging DeepSpeed's current technology pillars (training, inference and compression) as base technology enablers, DeepSpeed4Science will create a new set of AI system technologies tailored for accelerating scientific discoveries by addressing their unique complexity beyond the common technical approaches used for accelerating generic large language models (LLMs). In this paper, we showcase the early progress we made with DeepSpeed4Science in addressing two of the critical system challenges in structural biology research.