Zhang, Pengchuan
TLDR: Token-Level Detective Reward Model for Large Vision Language Models
Fu, Deqing, Xiao, Tong, Wang, Rui, Zhu, Wang, Zhang, Pengchuan, Pang, Guan, Jia, Robin, Chen, Lawrence
Although reward models have been successful in improving multimodal large language models, the reward models themselves remain brutal and contain minimal information. Notably, existing reward models only mimic human annotations by assigning only one binary feedback to any text, no matter how long the text is. In the realm of multimodal language models, where models are required to process both images and texts, a naive reward model may learn implicit biases toward texts and become less grounded in images. In this paper, we propose a $\textbf{T}$oken-$\textbf{L}$evel $\textbf{D}$etective $\textbf{R}$eward Model ($\textbf{TLDR}$) to provide fine-grained annotations to each text token. We first introduce a perturbation-based method to generate synthetic hard negatives and their token-level labels to train TLDR models. Then we show the rich usefulness of TLDR models both in assisting off-the-shelf models to self-correct their generations, and in serving as a hallucination evaluation tool. Finally, we show that TLDR models can significantly speed up human annotation by 3 times to acquire a broader range of high-quality vision language data.
Evaluating Text-to-Visual Generation with Image-to-Text Generation
Lin, Zhiqiu, Pathak, Deepak, Li, Baiqi, Li, Jiayao, Xia, Xide, Neubig, Graham, Zhang, Pengchuan, Ramanan, Deva
Despite significant progress in generative AI, comprehensive evaluation remains challenging because of the lack of effective metrics and standardized benchmarks. For instance, the widely-used CLIPScore measures the alignment between a (generated) image and text prompt, but it fails to produce reliable scores for complex prompts involving compositions of objects, attributes, and relations. One reason is that text encoders of CLIP can notoriously act as a "bag of words", conflating prompts such as "the horse is eating the grass" with "the grass is eating the horse". To address this, we introduce the VQAScore, which uses a visual-question-answering (VQA) model to produce an alignment score by computing the probability of a "Yes" answer to a simple "Does this figure show '{text}'?" question. Though simpler than prior art, VQAScore computed with off-the-shelf models produces state-of-the-art results across many (8) image-text alignment benchmarks. We also compute VQAScore with an in-house model that follows best practices in the literature. For example, we use a bidirectional image-question encoder that allows image embeddings to depend on the question being asked (and vice versa). Our in-house model, CLIP-FlanT5, outperforms even the strongest baselines that make use of the proprietary GPT-4V. Interestingly, although we train with only images, VQAScore can also align text with video and 3D models. VQAScore allows researchers to benchmark text-to-visual generation using complex texts that capture the compositional structure of real-world prompts. We introduce GenAI-Bench, a more challenging benchmark with 1,600 compositional text prompts that require parsing scenes, objects, attributes, relationships, and high-order reasoning like comparison and logic. GenAI-Bench also offers over 15,000 human ratings for leading image and video generation models such as Stable Diffusion, DALL-E 3, and Gen2.
Revisiting the Role of Language Priors in Vision-Language Models
Lin, Zhiqiu, Chen, Xinyue, Pathak, Deepak, Zhang, Pengchuan, Ramanan, Deva
Vision-language models (VLMs) are impactful in part because they can be applied to a variety of visual understanding tasks in a zero-shot fashion, without any fine-tuning. We study $\textit{generative VLMs}$ that are trained for next-word generation given an image. We explore their zero-shot performance on the illustrative task of image-text retrieval across 8 popular vision-language benchmarks. Our first observation is that they can be repurposed for discriminative tasks (such as image-text retrieval) by simply computing the match score of generating a particular text string given an image. We call this probabilistic score the $\textit{Visual Generative Pre-Training Score}$ (VisualGPTScore). While the VisualGPTScore produces near-perfect accuracy on some retrieval benchmarks, it yields poor accuracy on others. We analyze this behavior through a probabilistic lens, pointing out that some benchmarks inadvertently capture unnatural language distributions by creating adversarial but unlikely text captions. In fact, we demonstrate that even a "blind" language model that ignores any image evidence can sometimes outperform all prior art, reminiscent of similar challenges faced by the visual-question answering (VQA) community many years ago. We derive a probabilistic post-processing scheme that controls for the amount of linguistic bias in generative VLMs at test time without having to retrain or fine-tune the model. We show that the VisualGPTScore, when appropriately debiased, is a strong zero-shot baseline for vision-language understanding, oftentimes producing state-of-the-art accuracy.
The Role of Chain-of-Thought in Complex Vision-Language Reasoning Task
Wu, Yifan, Zhang, Pengchuan, Xiong, Wenhan, Oguz, Barlas, Gee, James C., Nie, Yixin
The study explores the effectiveness of the Chain-of-Thought approach, known for its proficiency in language tasks by breaking them down into sub-tasks and intermediate steps, in improving vision-language tasks that demand sophisticated perception and reasoning. We present the "Description then Decision" strategy, which is inspired by how humans process signals. This strategy significantly improves probing task performance by 50%, establishing the groundwork for future research on reasoning paradigms in complex vision-language tasks.
Coarse-to-Fine Contrastive Learning in Image-Text-Graph Space for Improved Vision-Language Compositionality
Singh, Harman, Zhang, Pengchuan, Wang, Qifan, Wang, Mengjiao, Xiong, Wenhan, Du, Jingfei, Chen, Yu
Contrastively trained vision-language models have achieved remarkable progress in vision and language representation learning, leading to state-of-the-art models for various downstream multimodal tasks. However, recent research has highlighted severe limitations of these models in their ability to perform compositional reasoning over objects, attributes, and relations. Scene graphs have emerged as an effective way to understand images compositionally. These are graph-structured semantic representations of images that contain objects, their attributes, and relations with other objects in a scene. In this work, we consider the scene graph parsed from text as a proxy for the image scene graph and propose a graph decomposition and augmentation framework along with a coarse-to-fine contrastive learning objective between images and text that aligns sentences of various complexities to the same image. Along with this, we propose novel negative mining techniques in the scene graph space for improving attribute binding and relation understanding. Through extensive experiments, we demonstrate the effectiveness of our approach that significantly improves attribute binding, relation understanding, systematic generalization, and productivity on multiple recently proposed benchmarks (For example, improvements upto $18\%$ for systematic generalization, $16.5\%$ for relation understanding over a strong baseline), while achieving similar or better performance than CLIP on various general multimodal tasks.
Parameter-efficient Model Adaptation for Vision Transformers
He, Xuehai, Li, Chunyuan, Zhang, Pengchuan, Yang, Jianwei, Wang, Xin Eric
In computer vision, it has achieved great transfer learning performance via adapting large-scale pretrained vision models (e.g., vision transformers) to downstream tasks. Common approaches for model adaptation either update all model parameters or leverage linear probes. In this paper, we aim to study parameter-efficient model adaptation strategies for vision transformers on the image classification task. We formulate efficient model adaptation as a subspace training problem and perform a comprehensive benchmarking over different efficient adaptation methods. We conduct an empirical study on each efficient model adaptation method focusing on its performance alongside parameter cost. Furthermore, we propose a parameter-efficient model adaptation framework, which first selects submodules by measuring local intrinsic dimensions and then projects them into subspace for further decomposition via a novel Kronecker Adaptation (KAdaptation) method. We analyze and compare our method with a diverse set of baseline model adaptation methods (including state-of-the-art methods for pretrained language models). Our method performs the best in terms of the tradeoff between accuracy and parameter efficiency across 20 image classification datasets under the few-shot setting and 7 image classification datasets under the full-shot setting.
RegionCLIP: Region-based Language-Image Pretraining
Zhong, Yiwu, Yang, Jianwei, Zhang, Pengchuan, Li, Chunyuan, Codella, Noel, Li, Liunian Harold, Zhou, Luowei, Dai, Xiyang, Yuan, Lu, Li, Yin, Gao, Jianfeng
Contrastive language-image pretraining (CLIP) using image-text pairs has achieved impressive results on image classification in both zero-shot and transfer learning settings. However, we show that directly applying such models to recognize image regions for object detection leads to poor performance due to a domain shift: CLIP was trained to match an image as a whole to a text description, without capturing the fine-grained alignment between image regions and text spans. To mitigate this issue, we propose a new method called RegionCLIP that significantly extends CLIP to learn region-level visual representations, thus enabling fine-grained alignment between image regions and textual concepts. Our method leverages a CLIP model to match image regions with template captions and then pretrains our model to align these region-text pairs in the feature space. When transferring our pretrained model to the open-vocabulary object detection tasks, our method significantly outperforms the state of the art by 3.8 AP50 and 2.2 AP for novel categories on COCO and LVIS datasets, respectively. Moreoever, the learned region representations support zero-shot inference for object detection, showing promising results on both COCO and LVIS datasets. Our code is available at https://github.com/microsoft/RegionCLIP.
Grounded Language-Image Pre-training
Li, Liunian Harold, Zhang, Pengchuan, Zhang, Haotian, Yang, Jianwei, Li, Chunyuan, Zhong, Yiwu, Wang, Lijuan, Yuan, Lu, Zhang, Lei, Hwang, Jenq-Neng, Chang, Kai-Wei, Gao, Jianfeng
This paper presents a grounded language-image pre-training (GLIP) model for learning object-level, language-aware, and semantic-rich visual representations. GLIP unifies object detection and phrase grounding for pre-training. The unification brings two benefits: 1) it allows GLIP to learn from both detection and grounding data to improve both tasks and bootstrap a good grounding model; 2) GLIP can leverage massive image-text pairs by generating grounding boxes in a self-training fashion, making the learned representation semantic-rich. In our experiments, we pre-train GLIP on 27M grounding data, including 3M human-annotated and 24M web-crawled image-text pairs. The learned representations demonstrate strong zero-shot and few-shot transferability to various object-level recognition tasks. 1) When directly evaluated on COCO and LVIS (without seeing any images in COCO during pre-training), GLIP achieves 49.8 AP and 26.9 AP, respectively, surpassing many supervised baselines. 2) After fine-tuned on COCO, GLIP achieves 60.8 AP on val and 61.5 AP on test-dev, surpassing prior SoTA. 3) When transferred to 13 downstream object detection tasks, a 1-shot GLIP rivals with a fully-supervised Dynamic Head. Code will be released at https://github.com/microsoft/GLIP.
Florence: A New Foundation Model for Computer Vision
Yuan, Lu, Chen, Dongdong, Chen, Yi-Ling, Codella, Noel, Dai, Xiyang, Gao, Jianfeng, Hu, Houdong, Huang, Xuedong, Li, Boxin, Li, Chunyuan, Liu, Ce, Liu, Mengchen, Liu, Zicheng, Lu, Yumao, Shi, Yu, Wang, Lijuan, Wang, Jianfeng, Xiao, Bin, Xiao, Zhen, Yang, Jianwei, Zeng, Michael, Zhou, Luowei, Zhang, Pengchuan
Automated visual understanding of our diverse and open world demands computer vision models to generalize well with minimal customization for specific tasks, similar to human vision. Computer vision foundation models, which are trained on diverse, large-scale dataset and can be adapted to a wide range of downstream tasks, are critical for this mission to solve real-world computer vision applications. While existing vision foundation models such as CLIP, ALIGN, and Wu Dao 2.0 focus mainly on mapping images and textual representations to a cross-modal shared representation, we introduce a new computer vision foundation model, Florence, to expand the representations from coarse (scene) to fine (object), from static (images) to dynamic (videos), and from RGB to multiple modalities (caption, depth). By incorporating universal visual-language representations from Web-scale image-text data, our Florence model can be easily adapted for various computer vision tasks, such as classification, retrieval, object detection, VQA, image caption, video retrieval and action recognition. Moreover, Florence demonstrates outstanding performance in many types of transfer learning: fully sampled fine-tuning, linear probing, few-shot transfer and zero-shot transfer for novel images and objects. All of these properties are critical for our vision foundation model to serve general purpose vision tasks. Florence achieves new state-of-the-art results in majority of 44 representative benchmarks, e.g., ImageNet-1K zero-shot classification with top-1 accuracy of 83.74 and the top-5 accuracy of 97.18, 62.4 mAP on COCO fine tuning, 80.36 on VQA, and 87.8 on Kinetics-600.
Focal Self-attention for Local-Global Interactions in Vision Transformers
Yang, Jianwei, Li, Chunyuan, Zhang, Pengchuan, Dai, Xiyang, Xiao, Bin, Yuan, Lu, Gao, Jianfeng
Recently, Vision Transformer and its variants have shown great promise on various computer vision tasks. The ability of capturing short- and long-range visual dependencies through self-attention is arguably the main source for the success. But it also brings challenges due to quadratic computational overhead, especially for the high-resolution vision tasks (e.g., object detection). In this paper, we present focal self-attention, a new mechanism that incorporates both fine-grained local and coarse-grained global interactions. Using this new mechanism, each token attends the closest surrounding tokens at fine granularity but the tokens far away at coarse granularity, and thus can capture both short- and long-range visual dependencies efficiently and effectively. With focal self-attention, we propose a new variant of Vision Transformer models, called Focal Transformer, which achieves superior performance over the state-of-the-art vision Transformers on a range of public image classification and object detection benchmarks. In particular, our Focal Transformer models with a moderate size of 51.1M and a larger size of 89.8M achieve 83.5 and 83.8 Top-1 accuracy, respectively, on ImageNet classification at 224x224 resolution. Using Focal Transformers as the backbones, we obtain consistent and substantial improvements over the current state-of-the-art Swin Transformers for 6 different object detection methods trained with standard 1x and 3x schedules. Our largest Focal Transformer yields 58.7/58.9 box mAPs and 50.9/51.3 mask mAPs on COCO mini-val/test-dev, and 55.4 mIoU on ADE20K for semantic segmentation, creating new SoTA on three of the most challenging computer vision tasks.