Zhang, Mian
Preference Learning Unlocks LLMs' Psycho-Counseling Skills
Zhang, Mian, Eack, Shaun M., Chen, Zhiyu Zoey
Applying large language models (LLMs) to assist in psycho-counseling is an emerging and meaningful approach, driven by the significant gap between patient needs and the availability of mental health support. However, current LLMs struggle to consistently provide effective responses to client speeches, largely due to the lack of supervision from high-quality real psycho-counseling data, whose content is typically inaccessible due to client privacy concerns. Furthermore, the quality of therapists' responses in available sessions can vary significantly based on their professional training and experience. Assessing the quality of therapists' responses remains an open challenge. In this work, we address these challenges by first proposing a set of professional and comprehensive principles to evaluate therapists' responses to client speeches. Using these principles, we create a preference dataset, PsychoCounsel-Preference, which contains 36k high-quality preference comparison pairs. This dataset aligns with the preferences of professional psychotherapists, providing a robust foundation for evaluating and improving LLMs in psycho-counseling. Experiments on reward modeling and preference learning demonstrate that PsychoCounsel-Preference is an excellent resource for LLMs to acquire essential skills for responding to clients in a counseling session. Our best-aligned model, PsychoCounsel-Llama3-8B, achieves an impressive win rate of 87% against GPT-4o. We release PsychoCounsel-Preference, PsychoCounsel-Llama3-8B and the reward model PsychoCounsel Llama3-8B-Reward to facilitate the research of psycho-counseling with LLMs at: https://hf.co/Psychotherapy-LLM.
CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy
Zhang, Mian, Yang, Xianjun, Zhang, Xinlu, Labrum, Travis, Chiu, Jamie C., Eack, Shaun M., Fang, Fei, Wang, William Yang, Chen, Zhiyu Zoey
There is a significant gap between patient needs and available mental health support today. In this paper, we aim to thoroughly examine the potential of using Large Language Models (LLMs) to assist professional psychotherapy. To this end, we propose a new benchmark, CBT-BENCH, for the systematic evaluation of cognitive behavioral therapy (CBT) assistance. We include three levels of tasks in CBT-BENCH: I: Basic CBT knowledge acquisition, with the task of multiple-choice questions; II: Cognitive model understanding, with the tasks of cognitive distortion classification, primary core belief classification, and fine-grained core belief classification; III: Therapeutic response generation, with the task of generating responses to patient speech in CBT therapy sessions. These tasks encompass key aspects of CBT that could potentially be enhanced through AI assistance, while also outlining a hierarchy of capability requirements, ranging from basic knowledge recitation to engaging in real therapeutic conversations. We evaluated representative LLMs on our benchmark. Experimental results indicate that while LLMs perform well in reciting CBT knowledge, they fall short in complex real-world scenarios requiring deep analysis of patients' cognitive structures and generating effective responses, suggesting potential future work.
Inconsistent dialogue responses and how to recover from them
Zhang, Mian, Jin, Lifeng, Song, Linfeng, Mi, Haitao, Yu, Dong
One critical issue for chat systems is to stay consistent about preferences, opinions, beliefs and facts of itself, which has been shown a difficult problem. In this work, we study methods to assess and bolster utterance consistency of chat systems. A dataset is first developed for studying the inconsistencies, where inconsistent dialogue responses, explanations of the inconsistencies, and recovery utterances are authored by annotators. This covers the life span of inconsistencies, namely introduction, understanding, and resolution. Building on this, we introduce a set of tasks centered on dialogue consistency, specifically focused on its detection and resolution. Our experimental findings indicate that our dataset significantly helps the progress in identifying and resolving conversational inconsistencies, and current popular large language models like ChatGPT which are good at resolving inconsistencies however still struggle with detection.
A Pairing Enhancement Approach for Aspect Sentiment Triplet Extraction
Yang, Fan, Zhang, Mian, Hu, Gongzhen, Zhou, Xiabing
Aspect Sentiment Triplet Extraction (ASTE) aims to extract the triplet of an aspect term, an opinion term, and their corresponding sentiment polarity from the review texts. Due to the complexity of language and the existence of multiple aspect terms and opinion terms in a single sentence, current models often confuse the connections between an aspect term and the opinion term describing it. To address this issue, we propose a pairing enhancement approach for ASTE, which incorporates contrastive learning during the training stage to inject aspect-opinion pairing knowledge into the triplet extraction model. Experimental results demonstrate that our approach performs well on four ASTE datasets (i.e., 14lap, 14res, 15res and 16res) compared to several related classical and state-of-the-art triplet extraction methods. Moreover, ablation studies conduct an analysis and verify the advantage of contrastive learning over other pairing enhancement approaches.
Friend-training: Learning from Models of Different but Related Tasks
Zhang, Mian, Jin, Lifeng, Song, Linfeng, Mi, Haitao, Zhou, Xiabing, Yu, Dong
Current self-training methods such as standard self-training, co-training, tri-training, and others often focus on improving model performance on a single task, utilizing differences in input features, model architectures, and training processes. However, many tasks in natural language processing are about different but related aspects of language, and models trained for one task can be great teachers for other related tasks. In this work, we propose friend-training, a cross-task self-training framework, where models trained to do different tasks are used in an iterative training, pseudo-labeling, and retraining process to help each other for better selection of pseudo-labels. With two dialogue understanding tasks, conversational semantic role labeling and dialogue rewriting, chosen for a case study, we show that the models trained with the friend-training framework achieve the best performance compared to strong baselines.