Goto

Collaborating Authors

 Zhang, Man


FurniScene: A Large-scale 3D Room Dataset with Intricate Furnishing Scenes

arXiv.org Artificial Intelligence

Indoor scene generation has attracted significant attention recently as it is crucial for applications of gaming, virtual reality, and interior design. Current indoor scene generation methods can produce reasonable room layouts but often lack diversity and realism. This is primarily due to the limited coverage of existing datasets, including only large furniture without tiny furnishings in daily life. To address these challenges, we propose FurniScene, a large-scale 3D room dataset with intricate furnishing scenes from interior design professionals. Specifically, the FurniScene consists of 11,698 rooms and 39,691 unique furniture CAD models with 89 different types, covering things from large beds to small teacups on the coffee table. To better suit fine-grained indoor scene layout generation, we introduce a novel Two-Stage Diffusion Scene Model (TSDSM) and conduct an evaluation benchmark for various indoor scene generation based on FurniScene. Quantitative and qualitative evaluations demonstrate the capability of our method to generate highly realistic indoor scenes. Our dataset and code will be publicly available soon.


Spectral Prompt Tuning:Unveiling Unseen Classes for Zero-Shot Semantic Segmentation

arXiv.org Artificial Intelligence

Recently, CLIP has found practical utility in the domain of pixel-level zero-shot segmentation tasks. The present landscape features two-stage methodologies beset by issues such as intricate pipelines and elevated computational costs. While current one-stage approaches alleviate these concerns and incorporate Visual Prompt Training (VPT) to uphold CLIP's generalization capacity, they still fall short in fully harnessing CLIP's potential for pixel-level unseen class demarcation and precise pixel predictions. To further stimulate CLIP's zero-shot dense prediction capability, we propose SPT-SEG, a one-stage approach that improves CLIP's adaptability from image to pixel. Specifically, we initially introduce Spectral Prompt Tuning (SPT), incorporating spectral prompts into the CLIP visual encoder's shallow layers to capture structural intricacies of images, thereby enhancing comprehension of unseen classes. Subsequently, we introduce the Spectral Guided Decoder (SGD), utilizing both high and low-frequency information to steer the network's spatial focus towards more prominent classification features, enabling precise pixel-level prediction outcomes. Through extensive experiments on two public datasets, we demonstrate the superiority of our method over state-of-the-art approaches, performing well across all classes and particularly excelling in handling unseen classes. Code is available at:https://github.com/clearxu/SPT.


The Development of LLMs for Embodied Navigation

arXiv.org Artificial Intelligence

In recent years, the rapid advancement of Large Language Models (LLMs) such as the Generative Pre-trained Transformer (GPT) has attracted increasing attention due to their potential in a variety of practical applications. The application of LLMs with Embodied Intelligence has emerged as a significant area of focus. Among the myriad applications of LLMs, navigation tasks are particularly noteworthy because they demand a deep understanding of the environment and quick, accurate decision-making. LLMs can augment embodied intelligence systems with sophisticated environmental perception and decision-making support, leveraging their robust language and image-processing capabilities. This article offers an exhaustive summary of the symbiosis between LLMs and embodied intelligence with a focus on navigation. It reviews state-of-the-art models, research methodologies, and assesses the advantages and disadvantages of existing embodied navigation models and datasets. Finally, the article elucidates the role of LLMs in embodied intelligence, based on current research, and forecasts future directions in the field. A comprehensive list of studies in this survey is available at https://github.com/Rongtao-Xu/Awesome-LLM-EN


DeepQTest: Testing Autonomous Driving Systems with Reinforcement Learning and Real-world Weather Data

arXiv.org Artificial Intelligence

Autonomous driving systems (ADSs) are capable of sensing the environment and making driving decisions autonomously. These systems are safety-critical, and testing them is one of the important approaches to ensure their safety. However, due to the inherent complexity of ADSs and the high dimensionality of their operating environment, the number of possible test scenarios for ADSs is infinite. Besides, the operating environment of ADSs is dynamic, continuously evolving, and full of uncertainties, which requires a testing approach adaptive to the environment. In addition, existing ADS testing techniques have limited effectiveness in ensuring the realism of test scenarios, especially the realism of weather conditions and their changes over time. Recently, reinforcement learning (RL) has demonstrated great potential in addressing challenging problems, especially those requiring constant adaptations to dynamic environments. To this end, we present DeepQTest, a novel ADS testing approach that uses RL to learn environment configurations with a high chance of revealing abnormal ADS behaviors. Specifically, DeepQTest employs Deep Q-Learning and adopts three safety and comfort measures to construct the reward functions. To ensure the realism of generated scenarios, DeepQTest defines a set of realistic constraints and introduces real-world weather conditions into the simulated environment. We employed three comparison baselines, i.e., random, greedy, and a state-of-the-art RL-based approach DeepCOllision, for evaluating DeepQTest on an industrial-scale ADS. Evaluation results show that DeepQTest demonstrated significantly better effectiveness in terms of generating scenarios leading to collisions and ensuring scenario realism compared with the baselines. In addition, among the three reward functions implemented in DeepQTest, Time-To-Collision is recommended as the best design according to our study.


RoleLLM: Benchmarking, Eliciting, and Enhancing Role-Playing Abilities of Large Language Models

arXiv.org Artificial Intelligence

The advent of Large Language Models (LLMs) has paved the way for complex tasks such as role-playing, which enhances user interactions by enabling models to imitate various characters. However, the closed-source nature of state-of-the-art LLMs and their general-purpose training limit role-playing optimization. In this paper, we introduce RoleLLM, a framework to benchmark, elicit, and enhance role-playing abilities in LLMs. RoleLLM comprises four stages: (1) Role Profile Construction for 100 roles; (2) Context-Based Instruction Generation (Context-Instruct) for role-specific knowledge extraction; (3) Role Prompting using GPT (RoleGPT) for speaking style imitation; and (4) Role-Conditioned Instruction Tuning (RoCIT) for fine-tuning open-source models along with role customization. By Context-Instruct and RoleGPT, we create RoleBench, the first systematic and fine-grained character-level benchmark dataset for role-playing with 168,093 samples. Moreover, RoCIT on RoleBench yields RoleLLaMA (English) and RoleGLM (Chinese), significantly enhancing role-playing abilities and even achieving comparable results with RoleGPT (using GPT-4).


Adversarial Discriminative Heterogeneous Face Recognition

AAAI Conferences

The gap between sensing patterns of different face modalities remains a challenging problem in heterogeneous face recognition (HFR). This paper proposes an adversarial discriminative feature learning framework to close the sensing gap via adversarial learning on both raw-pixel space and compact feature space. This framework integrates cross-spectral face hallucination and discriminative feature learning into an end-to-end adversarial network. In the pixel space, we make use of generative adversarial networks to perform cross-spectral face hallucination. An elaborate two-path model is introduced to alleviate the lack of paired images, which gives consideration to both global structures and local textures. In the feature space, an adversarial loss and a high-order variance discrepancy loss are employed to measure the global and local discrepancy between two heterogeneous distributions respectively. These two losses enhance domain-invariant feature learning and modality independent noise removing. Experimental results on three NIR-VIS databases show that our proposed approach outperforms state-of-the-art HFR methods, without requiring of complex network or large-scale training dataset.


Simultaneous Feature and Sample Reduction for Image-Set Classification

AAAI Conferences

Image-set classification is the assignment of a label to a given image set. In real-life scenarios such as surveillance videos, each image set often contains much redundancy in terms of features and samples. This paper introduces a joint learning method for image-set classification that simultaneously learns compact binary codes and removes redundant samples. The joint objective function of our model mainly includes two parts. The first part seeks a hashing function to generate binary codes that have larger inter-class and smaller intra-class distances. The second one reduces redundant samples with discrete constraints in a low-rank way. A kernel method based on anchor points is further used to reduce sample variations. The proposed discrete objective function is simplified to a series of sub-problems that admit an analytical solution, resulting in a high-quality discrete solution with a low computational cost. Experiments on three commonly used image-set datasets show that the proposed method for the tasks of face recognition from image sets is efficient and effective.