Goto

Collaborating Authors

 Zhang, Lixian


TactV: A Class of Hybrid Terrestrial/Aerial Coaxial Tilt-Rotor Vehicles

arXiv.org Artificial Intelligence

To enhance the obstacle-crossing and endurance capabilities of vehicles operating in complex environments, this paper presents the design of a hybrid terrestrial/aerial coaxial tilt-rotor vehicle, TactV, which integrates advantages such as lightweight construction and high maneuverability. Unlike existing tandem dual-rotor vehicles, TactV employs a tiltable coaxial dual-rotor design and features a spherical cage structure that encases the body, allowing for omnidirectional movement while further reducing its overall dimensions. To enable TactV to maneuver flexibly in aerial, planar, and inclined surfaces, we established corresponding dynamic and control models for each mode. Additionally, we leveraged TactV's tiltable center of gravity to design energy-saving and high-mobility modes for ground operations, thereby further enhancing its endurance. Experimental designs for both aerial and ground tests corroborated the superiority of TactV's movement capabilities and control strategies.


Guiding Reinforcement Learning with Incomplete System Dynamics

arXiv.org Artificial Intelligence

Model-free reinforcement learning (RL) is inherently a reactive method, operating under the assumption that it starts with no prior knowledge of the system and entirely depends on trial-and-error for learning. This approach faces several challenges, such as poor sample efficiency, generalization, and the need for well-designed reward functions to guide learning effectively. On the other hand, controllers based on complete system dynamics do not require data. This paper addresses the intermediate situation where there is not enough model information for complete controller design, but there is enough to suggest that a model-free approach is not the best approach either. By carefully decoupling known and unknown information about the system dynamics, we obtain an embedded controller guided by our partial model and thus improve the learning efficiency of an RL-enhanced approach. A modular design allows us to deploy mainstream RL algorithms to refine the policy. Simulation results show that our method significantly improves sample efficiency compared with standard RL methods on continuous control tasks, and also offers enhanced performance over traditional control approaches. Experiments on a real ground vehicle also validate the performance of our method, including generalization and robustness.


Chat-PM: A Class of Composite Hybrid Aerial/Terrestrial Precise Manipulator

arXiv.org Artificial Intelligence

This paper concentrates on the development of Chat-PM, a class of composite hybrid aerial/terrestrial manipulator, in concern with composite configuration design, dynamics modeling, motion control and force estimation. Compared with existing aerial or terrestrial mobile manipulators, Chat-PM demonstrates advantages in terms of reachability, energy efficiency and manipulation precision. To achieve precise manipulation in terrestrial mode, the dynamics is analyzed with consideration of surface contact, based on which a cascaded controller is designed with compensation for the interference force and torque from the arm. Benefiting from the kinematic constraints caused by the surface contact, the position deviation and the vehicle vibration are effectively decreased, resulting in higher control precision of the end gripper. For manipulation on surfaces with unknown inclination angles, the moving horizon estimation (MHE) is exploited to obtain the precise estimations of force and inclination angle, which are used in the control loop to compensate for the effect of the unknown surface. Real-world experiments are performed to evaluate the superiority of the developed manipulator and the proposed controllers.