Goto

Collaborating Authors

 Zhang, Leijie


Multimodal Hyperspectral Image Classification via Interconnected Fusion

arXiv.org Artificial Intelligence

Existing multiple modality fusion methods, such as concatenation, summation, and encoder-decoder-based fusion, have recently been employed to combine modality characteristics of Hyperspectral Image (HSI) and Light Detection And Ranging (LiDAR). However, these methods consider the relationship of HSI-LiDAR signals from limited perspectives. More specifically, they overlook the contextual information across modalities of HSI and LiDAR and the intra-modality characteristics of LiDAR. In this paper, we provide a new insight into feature fusion to explore the relationships across HSI and LiDAR modalities comprehensively. An Interconnected Fusion (IF) framework is proposed. Firstly, the center patch of the HSI input is extracted and replicated to the size of the HSI input. Then, nine different perspectives in the fusion matrix are generated by calculating self-attention and cross-attention among the replicated center patch, HSI input, and corresponding LiDAR input. In this way, the intra- and inter-modality characteristics can be fully exploited, and contextual information is considered in both intra-modality and inter-modality manner. These nine interrelated elements in the fusion matrix can complement each other and eliminate biases, which can generate a multi-modality representation for classification accurately. Extensive experiments have been conducted on three widely used datasets: Trento, MUUFL, and Houston. The IF framework achieves state-of-the-art results on these datasets compared to existing approaches.


Federated Fuzzy Neural Network with Evolutionary Rule Learning

arXiv.org Artificial Intelligence

Distributed fuzzy neural networks (DFNNs) have attracted increasing attention recently due to their learning abilities in handling data uncertainties in distributed scenarios. However, it is challenging for DFNNs to handle cases in which the local data are non-independent and identically distributed (non-IID). In this paper, we propose a federated fuzzy neural network (FedFNN) with evolutionary rule learning (ERL) to cope with non-IID issues as well as data uncertainties. The FedFNN maintains a global set of rules in a server and a personalized subset of these rules for each local client. ERL is inspired by the theory of biological evolution; it encourages rule variations while activating superior rules and deactivating inferior rules for local clients with non-IID data. Specifically, ERL consists of two stages in an iterative procedure: a rule cooperation stage that updates global rules by aggregating local rules based on their activation statuses and a rule evolution stage that evolves the global rules and updates the activation statuses of the local rules. This procedure improves both the generalization and personalization of the FedFNN for dealing with non-IID issues and data uncertainties. Extensive experiments conducted on a range of datasets demonstrate the superiority of the FedFNN over state-of-the-art methods.