Zhang, Keyang
Learning from Mixed Datasets: A Monotonic Image Quality Assessment Model
Feng, Zhaopeng, Zhang, Keyang, Jia, Shuyue, Chen, Baoliang, Wang, Shiqi
Deep learning based image quality assessment (IQA) models usually learn to predict image quality from a single dataset, leading the model to overfit specific scenes. To account for this, mixed datasets training can be an effective way to enhance the generalization capability of the model. However, it is nontrivial to combine different IQA datasets, as their quality evaluation criteria, score ranges, view conditions, as well as subjects are usually not shared during the image quality annotation. In this paper, instead of aligning the annotations, we propose a monotonic neural network for IQA model learning with different datasets combined. In particular, our model consists of a dataset-shared quality regressor and several dataset-specific quality transformers. The quality regressor aims to obtain the perceptual qualities of each dataset while each quality transformer maps the perceptual qualities to the corresponding dataset annotations with their monotonicity maintained. The experimental results verify the effectiveness of the proposed learning strategy and our code is available at https://github.com/fzp0424/MonotonicIQA.
An Association Network for Computing Semantic Relatedness
Zhang, Keyang (Shanghai Jiao Tong University) | Zhu, Kenny (Shanghai Jiao Tong University) | Hwang, Seung-won (POSTECH)
To judge how much a pair of words (or texts) are semantically related is acognitive process. However, previous algorithms for computing semanticrelatedness are largely based on co-occurrences within textualwindows, and do not actively leverage cognitive human perceptions ofrelatedness. To bridge this perceptional gap, we propose to utilizefree association as signals to capture such human perceptions.However, free association, being manually evaluated,has limited lexical coverage and is inherently sparse. We propose to expand lexical coverage and overcome sparseness by constructing an association network of terms and concepts that combines signals from free association norms and five types of co-occurrences extracted from therich structures of Wikipedia. Our evaluation results validate thatsimple algorithms on this network give competitive results incomputing semantic relatedness between words and between shorttexts.