Zhang, Kaipeng
MPBench: A Comprehensive Multimodal Reasoning Benchmark for Process Errors Identification
Xu, Zhaopan, Zhou, Pengfei, Ai, Jiaxin, Zhao, Wangbo, Wang, Kai, Peng, Xiaojiang, Shao, Wenqi, Yao, Hongxun, Zhang, Kaipeng
Reasoning is an essential capacity for large language models (LLMs) to address complex tasks, where the identification of process errors is vital for improving this ability. Recently, process-level reward models (PRMs) were proposed to provide step-wise rewards that facilitate reinforcement learning and data production during training and guide LLMs toward correct steps during inference, thereby improving reasoning accuracy. However, existing benchmarks of PRMs are text-based and focus on error detection, neglecting other scenarios like reasoning search. To address this gap, we introduce MPBench, a comprehensive, multi-task, multimodal benchmark designed to systematically assess the effectiveness of PRMs in diverse scenarios. MPBench employs three evaluation paradigms, each targeting a specific role of PRMs in the reasoning process: (1) Step Correctness, which assesses the correctness of each intermediate reasoning step; (2) Answer Aggregation, which aggregates multiple solutions and selects the best one; and (3) Reasoning Process Search, which guides the search for optimal reasoning steps during inference. Through these paradigms, MPBench makes comprehensive evaluations and provides insights into the development of multimodal PRMs.
ProJudge: A Multi-Modal Multi-Discipline Benchmark and Instruction-Tuning Dataset for MLLM-based Process Judges
Ai, Jiaxin, Zhou, Pengfei, Xu, Zhaopan, Li, Ming, Zhang, Fanrui, Li, Zizhen, Sun, Jianwen, Feng, Yukang, Huang, Baojin, Wang, Zhongyuan, Zhang, Kaipeng
As multi-modal large language models (MLLMs) frequently exhibit errors when solving scientific problems, evaluating the validity of their reasoning processes is critical for ensuring reliability and uncovering fine-grained model weaknesses. Since human evaluation is laborious and costly, prompting MLLMs as automated process judges has become a common practice. However, the reliability of these model-based judges remains uncertain. To address this, we introduce ProJudgeBench, the first comprehensive benchmark specifically designed for evaluating abilities of MLLM-based process judges. ProJudgeBench comprises 2,400 test cases and 50,118 step-level labels, spanning four scientific disciplines with diverse difficulty levels and multi-modal content. In ProJudgeBench, each step is meticulously annotated by human experts for correctness, error type, and explanation, enabling a systematic evaluation of judges' capabilities to detect, classify and diagnose errors. Evaluation on ProJudgeBench reveals a significant performance gap between open-source and proprietary models. To bridge this gap, we further propose ProJudge-173k, a large-scale instruction-tuning dataset, and a Dynamic Dual-Phase fine-tuning strategy that encourages models to explicitly reason through problem-solving before assessing solutions. Both contributions significantly enhance the process evaluation capabilities of open-source models. All the resources will be released to foster future research of reliable multi-modal process evaluation.
ARMOR v0.1: Empowering Autoregressive Multimodal Understanding Model with Interleaved Multimodal Generation via Asymmetric Synergy
Sun, Jianwen, Feng, Yukang, Li, Chuanhao, Zhang, Fanrui, Li, Zizhen, Ai, Jiaxin, Zhou, Sizhuo, Dai, Yu, Zhang, Shenglin, Zhang, Kaipeng
Unified models (UniMs) for multimodal understanding and generation have recently received much attention in the area of vision and language. Existing UniMs are designed to simultaneously learn both multimodal understanding and generation capabilities, demanding substantial computational resources, and often struggle to generate interleaved text-image. We present ARMOR, a resource-efficient and pure autoregressive framework that achieves both understanding and generation by fine-tuning existing multimodal large language models (MLLMs). Specifically, ARMOR extends existing MLLMs from three perspectives: (1) For model architecture, an asymmetric encoder-decoder architecture with a forward-switching mechanism is introduced to unify embedding space integrating textual and visual modalities for enabling natural text-image interleaved generation with minimal computational overhead. (2) For training data, a meticulously curated, high-quality interleaved dataset is collected for fine-tuning MLLMs. (3) For the training algorithm, we propose a ``what or how to generate" algorithm to empower existing MLLMs with multimodal generation capabilities while preserving their multimodal understanding capabilities, through three progressive training stages based on the collected dataset. Experimental results demonstrate that ARMOR upgrades existing MLLMs to UniMs with promising image generation capabilities, using limited training resources. Our code will be released soon at https://armor.github.io.
ZipAR: Accelerating Auto-regressive Image Generation through Spatial Locality
He, Yefei, Chen, Feng, He, Yuanyu, He, Shaoxuan, Zhou, Hong, Zhang, Kaipeng, Zhuang, Bohan
In this paper, we propose ZipAR, a training-free, plug-and-play parallel decoding framework for accelerating auto-regressive (AR) visual generation. The motivation stems from the observation that images exhibit local structures, and spatially distant regions tend to have minimal interdependence. Given a partially decoded set of visual tokens, in addition to the original next-token prediction scheme in the row dimension, the tokens corresponding to spatially adjacent regions in the column dimension can be decoded in parallel, enabling the ``next-set prediction'' paradigm. By decoding multiple tokens simultaneously in a single forward pass, the number of forward passes required to generate an image is significantly reduced, resulting in a substantial improvement in generation efficiency. Experiments demonstrate that ZipAR can reduce the number of model forward passes by up to 91% on the Emu3-Gen model without requiring any additional retraining. Code is available here: https://github.com/ThisisBillhe/ZipAR.
ZipVL: Efficient Large Vision-Language Models with Dynamic Token Sparsification
He, Yefei, Chen, Feng, Liu, Jing, Shao, Wenqi, Zhou, Hong, Zhang, Kaipeng, Zhuang, Bohan
The efficiency of large vision-language models (LVLMs) is constrained by the computational bottleneck of the attention mechanism during the prefill phase and the memory bottleneck of fetching the key-value (KV) cache in the decoding phase, particularly in scenarios involving high-resolution images or videos. Visual content often exhibits substantial redundancy, resulting in highly sparse attention maps within LVLMs. This sparsity can be leveraged to accelerate attention computation or compress the KV cache through various approaches. However, most studies focus on addressing only one of these bottlenecks and do not adequately support dynamic adjustment of sparsity concerning distinct layers or tasks. In this paper, we present ZipVL, an efficient inference framework designed for LVLMs through a dynamic ratio allocation strategy of important tokens. This ratio is adaptively determined based on the layer-specific distribution of attention scores, rather than fixed hyper-parameters, thereby improving efficiency for less complex tasks while maintaining high performance for more challenging ones. Then we select important tokens based on their normalized attention scores and perform sparse attention mechanism solely on those important tokens, reducing the latency in the prefill phase. Tokens deemed less important will be discarded to reduce KV cache size, alleviating the memory bottleneck in the decoding phase. Our experiments demonstrate that ZipVL can accelerate the prefill phase by 2.3$\times$ and improve decoding throughput by 2.8$\times$, with a minimal accuracy reduction of only 0.5\% on VQAv2 benchmark over LLaVA-Next-13B model, effectively enhancing the generation efficiency of LVLMs.
TP-Eval: Tap Multimodal LLMs' Potential in Evaluation by Customizing Prompts
Xie, Yuxuan, Li, Tianhua, Shao, Wenqi, Zhang, Kaipeng
Recently, multimodal large language models (MLLMs) have received much attention for their impressive capabilities. The evaluation of MLLMs is becoming critical to analyzing attributes of MLLMs and providing valuable insights. However, current benchmarks overlook the problem of prompt sensitivity - minor prompt variations may lead to significant performance fluctuations. Thus, inappropriate prompts may obscure the models' capabilities, underestimating the models' performance. Moreover, different models have different preferences for different prompts, and thus, using the same prompt for all models will cause evaluation bias. This paper analyzes this deficiency in existing benchmarks and further introduces a new evaluation framework named TP-Eval, which introduces a prompt customization method to reduce evaluation biases and tap models' potential. TP-Eval will rewrite the original prompts to different customized prompts for different models. In particular, we propose some well-designed modules for prompt customization tailored to the scenario of MLLM evaluation. Extensive experiments demonstrate the effectiveness of our approach to uncovering models' capabilities, and TP-Eval should benefit the community in developing more comprehensive and convincing MLLM evaluation benchmarks.
EfficientQAT: Efficient Quantization-Aware Training for Large Language Models
Chen, Mengzhao, Shao, Wenqi, Xu, Peng, Wang, Jiahao, Gao, Peng, Zhang, Kaipeng, Qiao, Yu, Luo, Ping
Large language models (LLMs) are integral to modern natural language processing and artificial intelligence. However, they face challenges in managing their significant memory requirements. Although quantization-aware training (QAT) offers a solution by reducing memory consumption through low-bit representations with minimal accuracy loss, it demands substantial training resources to optimize model weights and quantization parameters. To address this, we propose Efficient Quantization-Aware Training (EfficientQAT), a novel quantization technique for compressing LLMs. EfficientQAT involves two consecutive phases: Block-wise training of all parameters (Block-AP) and end-to-end training of quantization parameters (E2E-QP). Block-AP sequentially conducts quantization-aware training for all parameters in each transformer block with block-wise reconstruction, maintaining efficiency by avoiding training the entire LLM. Initialized with quantized model, E2E-QP then trains only quantization parameters (step sizes) end-to-end, enhancing efficiency with a fixed quantized backbone and reduced trainable parameter count. Extensive experiments demonstrate that EfficientQAT outperforms previous quantization methods across a range of models, including base LLMs, instruction-tuned LLMs, and multimodal LLMs, with scales from 7B to 70B parameters at various quantization bits. For instance, EfficientQAT obtains a 2-bit Llama-2-70B model on a single A100-80GB GPU in 41 hours, with less than 3\% accuracy degradation compared to the full precision (69.48 vs. 72.41). Notably, this INT2 quantized 70B model obtains a 1.67 accuracy gain over the Llama-2-13B model (69.48 vs. 67.81) while requiring less memory (19.2GB vs. 24.2GB). Code is available at https://github.com/OpenGVLab/EfficientQAT.
Needle In A Multimodal Haystack
Wang, Weiyun, Zhang, Shuibo, Ren, Yiming, Duan, Yuchen, Li, Tiantong, Liu, Shuo, Hu, Mengkang, Chen, Zhe, Zhang, Kaipeng, Lu, Lewei, Zhu, Xizhou, Luo, Ping, Qiao, Yu, Dai, Jifeng, Shao, Wenqi, Wang, Wenhai
With the rapid advancement of multimodal large language models (MLLMs), their evaluation has become increasingly comprehensive. However, understanding long multimodal content, as a foundational ability for real-world applications, remains underexplored. In this work, we present Needle In A Multimodal Haystack (MM-NIAH), the first benchmark specifically designed to systematically evaluate the capability of existing MLLMs to comprehend long multimodal documents. Our benchmark includes three types of evaluation tasks: multimodal retrieval, counting, and reasoning. In each task, the model is required to answer the questions according to different key information scattered throughout the given multimodal document. Evaluating the leading MLLMs on MM-NIAH, we observe that existing models still have significant room for improvement on these tasks, especially on vision-centric evaluation. We hope this work can provide a platform for further research on long multimodal document comprehension and contribute to the advancement of MLLMs.
Lumina-Next: Making Lumina-T2X Stronger and Faster with Next-DiT
Zhuo, Le, Du, Ruoyi, Xiao, Han, Li, Yangguang, Liu, Dongyang, Huang, Rongjie, Liu, Wenze, Zhao, Lirui, Wang, Fu-Yun, Ma, Zhanyu, Luo, Xu, Wang, Zehan, Zhang, Kaipeng, Zhu, Xiangyang, Liu, Si, Yue, Xiangyu, Liu, Dingning, Ouyang, Wanli, Liu, Ziwei, Qiao, Yu, Li, Hongsheng, Gao, Peng
Lumina-T2X is a nascent family of Flow-based Large Diffusion Transformers that establishes a unified framework for transforming noise into various modalities, such as images and videos, conditioned on text instructions. Despite its promising capabilities, Lumina-T2X still encounters challenges including training instability, slow inference, and extrapolation artifacts. In this paper, we present Lumina-Next, an improved version of Lumina-T2X, showcasing stronger generation performance with increased training and inference efficiency. We begin with a comprehensive analysis of the Flag-DiT architecture and identify several suboptimal components, which we address by introducing the Next-DiT architecture with 3D RoPE and sandwich normalizations. To enable better resolution extrapolation, we thoroughly compare different context extrapolation methods applied to text-to-image generation with 3D RoPE, and propose Frequency- and Time-Aware Scaled RoPE tailored for diffusion transformers. Additionally, we introduced a sigmoid time discretization schedule to reduce sampling steps in solving the Flow ODE and the Context Drop method to merge redundant visual tokens for faster network evaluation, effectively boosting the overall sampling speed. Thanks to these improvements, Lumina-Next not only improves the quality and efficiency of basic text-to-image generation but also demonstrates superior resolution extrapolation capabilities and multilingual generation using decoder-based LLMs as the text encoder, all in a zero-shot manner. To further validate Lumina-Next as a versatile generative framework, we instantiate it on diverse tasks including visual recognition, multi-view, audio, music, and point cloud generation, showcasing strong performance across these domains. By releasing all codes and model weights, we aim to advance the development of next-generation generative AI capable of universal modeling.
Position: Towards Implicit Prompt For Text-To-Image Models
Yang, Yue, Lin, Yuqi, Liu, Hong, Shao, Wenqi, Chen, Runjian, Shang, Hailong, Wang, Yu, Qiao, Yu, Zhang, Kaipeng, Luo, Ping
Recent text-to-image (T2I) models have had great success, and many benchmarks have been proposed to evaluate their performance and safety. However, they only consider explicit prompts while neglecting implicit prompts (hint at a target without explicitly mentioning it). These prompts may get rid of safety constraints and pose potential threats to the applications of these models. This position paper highlights the current state of T2I models toward implicit prompts. We present a benchmark named ImplicitBench and conduct an investigation on the performance and impacts of implicit prompts with popular T2I models. Specifically, we design and collect more than 2,000 implicit prompts of three aspects: General Symbols, Celebrity Privacy, and Not-Safe-For-Work (NSFW) Issues, and evaluate six well-known T2I models' capabilities under these implicit prompts. Experiment results show that (1) T2I models are able to accurately create various target symbols indicated by implicit prompts; (2) Implicit prompts bring potential risks of privacy leakage for T2I models. (3) Constraints of NSFW in most of the evaluated T2I models can be bypassed with implicit prompts. We call for increased attention to the potential and risks of implicit prompts in the T2I community and further investigation into the capabilities and impacts of implicit prompts, advocating for a balanced approach that harnesses their benefits while mitigating their risks.