Zhang, Jinghao
Personalized Text Generation with Contrastive Activation Steering
Zhang, Jinghao, Liu, Yuting, Wang, Wenjie, Liu, Qiang, Wu, Shu, Wang, Liang, Chua, Tat-Seng
Personalized text generation aims to infer users' writing style preferences from their historical texts and generate outputs that faithfully reflect these stylistic characteristics. Existing solutions primarily adopt two paradigms: retrieval-augmented generation (RAG) and parameter-efficient fine-tuning (PEFT). While these approaches have advanced the field, they suffer from two critical limitations: (1) the entanglement of content semantics and stylistic patterns in historical texts impedes accurate modeling of user-specific writing preferences; and (2) scalability challenges arising from both RAG's inference latency by retrieval operations and PEFT's parameter storage requirements for per user model. To overcome these limitations, we propose StyleVector, a training-free framework that disentangles and represents personalized writing style as a vector in LLM's activation space, enabling style-steered generation during inference without requiring costly retrieval or parameter storage. Comprehensive experiments demonstrate that our framework achieves a significant 8% relative improvement in personalized generation while reducing storage requirements by 1700 times over PEFT method.
Stealthy Attack on Large Language Model based Recommendation
Zhang, Jinghao, Liu, Yuting, Liu, Qiang, Wu, Shu, Guo, Guibing, Wang, Liang
Recently, the powerful large language models (LLMs) have been instrumental in propelling the progress of recommender systems (RS). However, while these systems have flourished, their susceptibility to security threats has been largely overlooked. In this work, we reveal that the introduction of LLMs into recommendation models presents new security vulnerabilities due to their emphasis on the textual content of items. We demonstrate that attackers can significantly boost an item's exposure by merely altering its textual content during the testing phase, without requiring direct interference with the model's training process. Additionally, the attack is notably stealthy, as it does not affect the overall recommendation performance and the modifications to the text are subtle, making it difficult for users and platforms to detect. Our comprehensive experiments across four mainstream LLM-based recommendation models demonstrate the superior efficacy and stealthiness of our approach. Our work unveils a significant security gap in LLM-based recommendation systems and paves the way for future research on protecting these systems.
MOT: A Mixture of Actors Reinforcement Learning Method by Optimal Transport for Algorithmic Trading
Cheng, Xi, Zhang, Jinghao, Zeng, Yunan, Xue, Wenfang
Algorithmic trading refers to executing buy and sell orders for specific assets based on automatically identified trading opportunities. Strategies based on reinforcement learning (RL) have demonstrated remarkable capabilities in addressing algorithmic trading problems. However, the trading patterns differ among market conditions due to shifted distribution data. Ignoring multiple patterns in the data will undermine the performance of RL. In this paper, we propose MOT, which designs multiple actors with disentangled representation learning to model the different patterns of the market. Furthermore, we incorporate the Optimal Transport (OT) algorithm to allocate samples to the appropriate actor by introducing a regularization loss term. Additionally, we propose Pretrain Module to facilitate imitation learning by aligning the outputs of actors with expert strategy and better balance the exploration and exploitation of RL. Experimental results on real futures market data demonstrate that MOT exhibits excellent profit capabilities while balancing risks.
CPT: Competence-progressive Training Strategy for Few-shot Node Classification
Yan, Qilong, Zhang, Yufeng, Zhang, Jinghao, Duan, Jingpu, Yin, Jian
Graph Neural Networks (GNNs) have made significant advancements in node classification, but their success relies on sufficient labeled nodes per class in the training data. Real-world graph data often exhibits a long-tail distribution with sparse labels, emphasizing the importance of GNNs' ability in few-shot node classification, which entails categorizing nodes with limited data. Traditional episodic meta-learning approaches have shown promise in this domain, but they face an inherent limitation: it might lead the model to converge to suboptimal solutions because of random and uniform task assignment, ignoring task difficulty levels. This could lead the meta-learner to face complex tasks too soon, hindering proper learning. Ideally, the meta-learner should start with simple concepts and advance to more complex ones, like human learning. So, we introduce CPT, a novel two-stage curriculum learning method that aligns task difficulty with the meta-learner's progressive competence, enhancing overall performance. Specifically, in CPT's initial stage, the focus is on simpler tasks, fostering foundational skills for engaging with complex tasks later. Importantly, the second stage dynamically adjusts task difficulty based on the meta-learner's growing competence, aiming for optimal knowledge acquisition. Extensive experiments on popular node classification datasets demonstrate significant improvements of our strategy over existing methods.
Mining Stable Preferences: Adaptive Modality Decorrelation for Multimedia Recommendation
Zhang, Jinghao, Liu, Qiang, Wu, Shu, Wang, Liang
Multimedia content is of predominance in the modern Web era. In real scenarios, multiple modalities reveal different aspects of item attributes and usually possess different importance to user purchase decisions. However, it is difficult for models to figure out users' true preference towards different modalities since there exists strong statistical correlation between modalities. Even worse, the strong statistical correlation might mislead models to learn the spurious preference towards inconsequential modalities. As a result, when data (modal features) distribution shifts, the learned spurious preference might not guarantee to be as effective on the inference set as on the training set. We propose a novel MOdality DEcorrelating STable learning framework, MODEST for brevity, to learn users' stable preference. Inspired by sample re-weighting techniques, the proposed method aims to estimate a weight for each item, such that the features from different modalities in the weighted distribution are decorrelated. We adopt Hilbert Schmidt Independence Criterion (HSIC) as independence testing measure which is a kernel-based method capable of evaluating the correlation degree between two multi-dimensional and non-linear variables. Our method could be served as a play-and-plug module for existing multimedia recommendation backbones. Extensive experiments on four public datasets and four state-of-the-art multimedia recommendation backbones unequivocally show that our proposed method can improve the performances by a large margin.