Goto

Collaborating Authors

 Zhang, Jiliang


Wireless-Friendly Window Position Optimization for RIS-Aided Outdoor-to-Indoor Networks based on Multi-Modal Large Language Model

arXiv.org Artificial Intelligence

This paper aims to simultaneously optimize indoor wireless and daylight performance by adjusting the positions of windows and the beam directions of window-deployed reconfigurable intelligent surfaces (RISs) for RIS-aided outdoor-to-indoor (O2I) networks utilizing large language models (LLM) as optimizers. Firstly, we illustrate the wireless and daylight system models of RIS-aided O2I networks and formulate a joint optimization problem to enhance both wireless traffic sum rate and daylight illumination performance. Then, we present a multi-modal LLM-based window optimization (LMWO) framework, accompanied by a prompt construction template to optimize the overall performance in a zero-shot fashion, functioning as both an architect and a wireless network planner. Finally, we analyze the optimization performance of the LMWO framework and the impact of the number of windows, room size, number of RIS units, and daylight factor. Numerical results demonstrate that our proposed LMWO framework can achieve outstanding optimization performance in terms of initial performance, convergence speed, final outcomes, and time complexity, compared with classic optimization methods. The building's wireless performance can be significantly enhanced while ensuring indoor daylight performance.


Adversarial Examples: Opportunities and Challenges

arXiv.org Machine Learning

With the advent of the era of artificial intelligence(AI), deep neural networks (DNNs) have shown huge superiority over human in image recognition, speech processing, autonomous vehicles and medical diagnosis. However, recent studies indicate that DNNs are vulnerable to adversarial examples (AEs) which are designed by attackers to fool deep learning models. Different from real examples, AEs can hardly be distinguished from human eyes, but mislead the model to predict incorrect outputs and therefore threaten security critical deep-learning applications. In recent years, the generation and defense of AEs have become a research hotspot in the field of AI security. This article reviews the latest research progress of AEs. First, we introduce the concept, cause, characteristic and evaluation metrics of AEs, then give a survey on the state-of-the-art AE generation methods with the discussion of advantages and disadvantages. After that we review the existing defenses and discuss their limitations. Finally, the future research opportunities and challenges of AEs are prospected.