Zhang, Jiashu
Diffusion-empowered AutoPrompt MedSAM
Huang, Peng, Hu, Shu, Peng, Bo, Zhang, Jiashu, Zhu, Hongtu, Wu, Xi, Wang, Xin
MedSAM, a medical foundation model derived from the SAM architecture, has demonstrated notable success across diverse medical domains. However, its clinical application faces two major challenges: the dependency on labor-intensive manual prompt generation, which imposes a significant burden on clinicians, and the absence of semantic labeling in the generated segmentation masks for organs or lesions, limiting its practicality for non-expert users. To address these limitations, we propose AutoMedSAM, an end-to-end framework derived from SAM, designed to enhance usability and segmentation performance. AutoMedSAM retains MedSAM's image encoder and mask decoder structure while introducing a novel diffusion-based class prompt encoder. The diffusion-based encoder employs a dual-decoder structure to collaboratively generate prompt embeddings guided by sparse and dense prompt definitions. These embeddings enhance the model's ability to understand and process clinical imagery autonomously. With this encoder, AutoMedSAM leverages class prompts to embed semantic information into the model's predictions, transforming MedSAM's semi-automated pipeline into a fully automated workflow. Furthermore, AutoMedSAM employs an uncertainty-aware joint optimization strategy during training to effectively inherit MedSAM's pre-trained knowledge while improving generalization by integrating multiple loss functions. Experimental results across diverse datasets demonstrate that AutoMedSAM achieves superior performance while broadening its applicability to both clinical settings and non-expert users. Code is available at https://github.com/HP-ML/AutoPromptMedSAM.git.
Recursive Decomposition of Logical Thoughts: Framework for Superior Reasoning and Knowledge Propagation in Large Language Models
Qasim, Kaleem Ullah, Zhang, Jiashu, Alsahfi, Tariq, Butt, Ateeq Ur Rehman
Enhancing the reasoning capabilities of Large Language Models remains a critical challenge in artificial intelligence. We introduce RDoLT, Recursive Decomposition of Logical Thought prompting, a novel framework that significantly boosts LLM reasoning performance. RDoLT is built on three key innovations: (1) recursively breaking down complex reasoning tasks into sub-tasks of progressive complexity; (2) employing an advanced selection and scoring mechanism to identify the most promising reasoning thoughts; and (3) integrating a knowledge propagation module that mimics human learning by keeping track of strong and weak thoughts for information propagation. Our approach was evaluated across multiple benchmarks, including GSM8K, SVAMP, MultiArith, LastLetterConcatenation, and Gaokao2023 Math. The results demonstrate that RDoLT consistently outperforms existing state-of-the-art techniques, achieving a 90.98 percent accuracy on GSM8K with ChatGPT-4, surpassing state-of-the-art techniques by 6.28 percent. Similar improvements were observed on other benchmarks, with accuracy gains ranging from 5.5 percent to 6.75 percent. These findings highlight RDoLT's potential to advance prompt engineering, offering a more effective and generalizable approach to complex reasoning tasks.
Random Euler Complex-Valued Nonlinear Filters
Zhang, Jiashu, Zhang, Sheng, Li, Defang
Over the last decade, both the neural network and kernel adaptive filter have successfully been used for nonlinear signal processing. However, they suffer from high computational cost caused by their complex/growing network structures. In this paper, we propose two random Euler filters for complex-valued nonlinear filtering problem, i.e., linear random Euler complex-valued filter (LRECF) and its widely-linear version (WLRECF), which possess a simple and fixed network structure. The transient and steady-state performances are studied in a non-stationary environment. The analytical minimum mean square error (MSE) and optimum step-size are derived. Finally, numerical simulations on complex-valued nonlinear system identification and nonlinear channel equalization are presented to show the effectiveness of the proposed methods.