Goto

Collaborating Authors

 Zhang, Jiaru


Learning Identifiable Structures Helps Avoid Bias in DNN-based Supervised Causal Learning

arXiv.org Artificial Intelligence

Causal discovery is a structured prediction task that aims to predict causal relations among variables based on their data samples. Supervised Causal Learning (SCL) is an emerging paradigm in this field. Existing Deep Neural Network (DNN)-based methods commonly adopt the "Node-Edge approach", in which the model first computes an embedding vector for each variable-node, then uses these variable-wise representations to concurrently and independently predict for each directed causal-edge. In this paper, we first show that this architecture has some systematic bias that cannot be mitigated regardless of model size and data size. We then propose SiCL, a DNN-based SCL method that predicts a skeleton matrix together with a v-tensor (a third-order tensor representing the v-structures). According to the Markov Equivalence Class (MEC) theory, both the skeleton and the v-structures are identifiable causal structures under the canonical MEC setting, so predictions about skeleton and v-structures do not suffer from the identifiability limit in causal discovery, thus SiCL can avoid the systematic bias in Node-Edge architecture, and enable consistent estimators for causal discovery. Moreover, SiCL is also equipped with a specially designed pairwise encoder module with a unidirectional attention layer to model both internal and external relationships of pairs of nodes. Experimental results on both synthetic and real-world benchmarks show that SiCL significantly outperforms other DNN-based SCL approaches.


THOR: A Generic Energy Estimation Approach for On-Device Training

arXiv.org Artificial Intelligence

Battery-powered mobile devices (e.g., smartphones, AR/VR glasses, and various IoT devices) are increasingly being used for AI training due to their growing computational power and easy access to valuable, diverse, and real-time data. On-device training is highly energy-intensive, making accurate energy consumption estimation crucial for effective job scheduling and sustainable AI. However, the heterogeneity of devices and the complexity of models challenge the accuracy and generalizability of existing estimation methods. This paper proposes THOR, a generic approach for energy consumption estimation in deep neural network (DNN) training. First, we examine the layer-wise energy additivity property of DNNs and strategically partition the entire model into layers for fine-grained energy consumption profiling. Then, we fit Gaussian Process (GP) models to learn from layer-wise energy consumption measurements and estimate a DNN's overall energy consumption based on its layer-wise energy additivity property. We conduct extensive experiments with various types of models across different real-world platforms. The results demonstrate that THOR has effectively reduced the Mean Absolute Percentage Error (MAPE) by up to 30%. Moreover, THOR is applied in guiding energy-aware pruning, successfully reducing energy consumption by 50%, thereby further demonstrating its generality and potential.


Revealing the Unseen: Guiding Personalized Diffusion Models to Expose Training Data

arXiv.org Artificial Intelligence

Diffusion Models (DMs) have evolved into advanced image generation tools, especially for few-shot fine-tuning where a pretrained DM is fine-tuned on a small set of images to capture specific styles or objects. Many people upload these personalized checkpoints online, fostering communities such as Civitai and HuggingFace. However, model owners may overlook the potential risks of data leakage by releasing their fine-tuned checkpoints. Moreover, concerns regarding copyright violations arise when unauthorized data is used during fine-tuning. In this paper, we ask: "Can training data be extracted from these fine-tuned DMs shared online?" A successful extraction would present not only data leakage threats but also offer tangible evidence of copyright infringement. To answer this, we propose FineXtract, a framework for extracting fine-tuning data. Our method approximates fine-tuning as a gradual shift in the model's learned distribution -- from the original pretrained DM toward the fine-tuning data. By extrapolating the models before and after fine-tuning, we guide the generation toward high-probability regions within the fine-tuned data distribution. We then apply a clustering algorithm to extract the most probable images from those generated using this extrapolated guidance. Experiments on DMs fine-tuned with datasets such as WikiArt, DreamBooth, and real-world checkpoints posted online validate the effectiveness of our method, extracting approximately 20% of fine-tuning data in most cases, significantly surpassing baseline performance.


Scalable Differentiable Causal Discovery in the Presence of Latent Confounders with Skeleton Posterior (Extended Version)

arXiv.org Machine Learning

Differentiable causal discovery has made significant advancements in the learning of directed acyclic graphs. However, its application to real-world datasets remains restricted due to the ubiquity of latent confounders and the requirement to learn maximal ancestral graphs (MAGs). To date, existing differentiable MAG learning algorithms have been limited to small datasets and failed to scale to larger ones (e.g., with more than 50 variables). The key insight in this paper is that the causal skeleton, which is the undirected version of the causal graph, has potential for improving accuracy and reducing the search space of the optimization procedure, thereby enhancing the performance of differentiable causal discovery. Therefore, we seek to address a two-fold challenge to harness the potential of the causal skeleton for differentiable causal discovery in the presence of latent confounders: (1) scalable and accurate estimation of skeleton and (2) universal integration of skeleton estimation with differentiable causal discovery. To this end, we propose SPOT (Skeleton Posterior-guided OpTimization), a two-phase framework that harnesses skeleton posterior for differentiable causal discovery in the presence of latent confounders. On the contrary to a ``point-estimation'', SPOT seeks to estimate the posterior distribution of skeletons given the dataset. It first formulates the posterior inference as an instance of amortized inference problem and concretizes it with a supervised causal learning (SCL)-enabled solution to estimate the skeleton posterior. To incorporate the skeleton posterior with differentiable causal discovery, SPOT then features a skeleton posterior-guided stochastic optimization procedure to guide the optimization of MAGs. [abridged due to length limit]


Exploring Diffusion Models' Corruption Stage in Few-Shot Fine-tuning and Mitigating with Bayesian Neural Networks

arXiv.org Artificial Intelligence

Few-shot fine-tuning of Diffusion Models (DMs) is a key advancement, significantly reducing training costs and enabling personalized AI applications. However, we explore the training dynamics of DMs and observe an unanticipated phenomenon: during the training process, image fidelity initially improves, then unexpectedly deteriorates with the emergence of noisy patterns, only to recover later with severe overfitting. We term the stage with generated noisy patterns as corruption stage. To understand this corruption stage, we begin by theoretically modeling the one-shot fine-tuning scenario, and then extend this modeling to more general cases. Through this modeling, we identify the primary cause of this corruption stage: a narrowed learning distribution inherent in the nature of few-shot fine-tuning. To tackle this, we apply Bayesian Neural Networks (BNNs) on DMs with variational inference to implicitly broaden the learned distribution, and present that the learning target of the BNNs can be naturally regarded as an expectation of the diffusion loss and a further regularization with the pretrained DMs. This approach is highly compatible with current few-shot fine-tuning methods in DMs and does not introduce any extra inference costs. Experimental results demonstrate that our method significantly mitigates corruption, and improves the fidelity, quality and diversity of the generated images in both object-driven and subject-driven generation tasks.


CGI-DM: Digital Copyright Authentication for Diffusion Models via Contrasting Gradient Inversion

arXiv.org Artificial Intelligence

Diffusion Models (DMs) have evolved into advanced image generation tools, especially for few-shot generation where a pretrained model is fine-tuned on a small set of images to capture a specific style or object. Despite their success, concerns exist about potential copyright violations stemming from the use of unauthorized data in this process. In response, we present Contrasting Gradient Inversion for Diffusion Models (CGI-DM), a novel method featuring vivid visual representations for digital copyright authentication. Our approach involves removing partial information of an image and recovering missing details by exploiting conceptual differences between the pretrained and fine-tuned models. We formulate the differences as KL divergence between latent variables of the two models when given the same input image, which can be maximized through Monte Carlo sampling and Projected Gradient Descent (PGD). The similarity between original and recovered images serves as a strong indicator of potential infringements. Extensive experiments on the WikiArt and Dreambooth datasets demonstrate the high accuracy of CGI-DM in digital copyright authentication, surpassing alternative validation techniques. Code implementation is available at https://github.com/Nicholas0228/Revelio.


Adversarial Example Does Good: Preventing Painting Imitation from Diffusion Models via Adversarial Examples

arXiv.org Artificial Intelligence

Recently, Diffusion Models (DMs) boost a wave in AI for Art yet raise new copyright concerns, where infringers benefit from using unauthorized paintings to train DMs to generate novel paintings in a similar style. To address these emerging copyright violations, in this paper, we are the first to explore and propose to utilize adversarial examples for DMs to protect human-created artworks. Specifically, we first build a theoretical framework to define and evaluate the adversarial examples for DMs. Then, based on this framework, we design a novel algorithm, named AdvDM, which exploits a Monte-Carlo estimation of adversarial examples for DMs by optimizing upon different latent variables sampled from the reverse process of DMs. Extensive experiments show that the generated adversarial examples can effectively hinder DMs from extracting their features. Therefore, our method can be a powerful tool for human artists to protect their copyright against infringers equipped with DM-based AI-for-Art applications. The code of our method is available on GitHub: https://github.com/mist-project/mist.git.