Goto

Collaborating Authors

 Zhang, Jianhai


Robust Diffusion Models for Adversarial Purification

arXiv.org Artificial Intelligence

Diffusion models (DMs) based adversarial purification (AP) has shown to be the most powerful alternative to adversarial training (AT). However, these methods neglect the fact that pre-trained diffusion models themselves are not robust to adversarial attacks as well. Additionally, the diffusion process can easily destroy semantic information and generate a high quality image but totally different from the original input image after the reverse process, leading to degraded standard accuracy. To overcome these issues, a natural idea is to harness adversarial training strategy to retrain or fine-tune the pre-trained diffusion model, which is computationally prohibitive. We propose a novel robust reverse process with adversarial guidance, which is independent of given pre-trained DMs and avoids retraining or fine-tuning the DMs. This robust guidance can not only ensure to generate purified examples retaining more semantic content but also mitigate the accuracy-robustness trade-off of DMs for the first time, which also provides DM-based AP an efficient adaptive ability to new attacks. Extensive experiments are conducted on CIFAR-10, CIFAR-100 and ImageNet to demonstrate that our method achieves the state-of-the-art results and exhibits generalization against different attacks.


Adversarial Training on Purification (AToP): Advancing Both Robustness and Generalization

arXiv.org Artificial Intelligence

The deep neural networks are known to be vulnerable to well-designed adversarial attacks. The most successful defense technique based on adversarial training (AT) can achieve optimal robustness against particular attacks but cannot generalize well to unseen attacks. Another effective defense technique based on adversarial purification (AP) can enhance generalization but cannot achieve optimal robustness. Meanwhile, both methods share one common limitation on the degraded standard accuracy. To mitigate these issues, we propose a novel framework called Adversarial Training on Purification (AToP), which comprises two components: perturbation destruction by random transforms (RT) and purifier model fine-tuned (FT) by adversarial loss. RT is essential to avoid overlearning to known attacks resulting in the robustness generalization to unseen attacks and FT is essential for the improvement of robustness. To evaluate our method in an efficient and scalable way, we conduct extensive experiments on CIFAR-10, CIFAR-100, and ImageNette to demonstrate that our method achieves state-of-the-art results and exhibits generalization ability against unseen attacks.


BCGGAN: Ballistocardiogram artifact removal in simultaneous EEG-fMRI using generative adversarial network

arXiv.org Artificial Intelligence

Due to its advantages of high temporal and spatial resolution, the technology of simultaneous electroencephalogram-functional magnetic resonance imaging (EEG-fMRI) acquisition and analysis has attracted much attention, and has been widely used in various research fields of brain science. However, during the fMRI of the brain, ballistocardiogram (BCG) artifacts can seriously contaminate the EEG. As an unpaired problem, BCG artifact removal now remains a considerable challenge. Aiming to provide a solution, this paper proposed a novel modular generative adversarial network (GAN) and corresponding training strategy to improve the network performance by optimizing the parameters of each module. In this manner, we hope to improve the local representation ability of the network model, thereby improving its overall performance and obtaining a reliable generator for BCG artifact removal. Moreover, the proposed method does not rely on additional reference signal or complex hardware equipment. Experimental results show that, compared with multiple methods, the technique presented in this paper can remove the BCG artifact more effectively while retaining essential EEG information.


ChatPLUG: Open-Domain Generative Dialogue System with Internet-Augmented Instruction Tuning for Digital Human

arXiv.org Artificial Intelligence

In this paper, we present ChatPLUG, a Chinese open-domain dialogue system for digital human applications that instruction finetunes on a wide range of dialogue tasks in a unified internet-augmented format. Different from other open-domain dialogue models that focus on large-scale pre-training and scaling up model size or dialogue corpus, we aim to build a powerful and practical dialogue system for digital human with diverse skills and good multi-task generalization by internet-augmented instruction tuning. To this end, we first conduct large-scale pre-training on both common document corpus and dialogue data with curriculum learning, so as to inject various world knowledge and dialogue abilities into ChatPLUG. Then, we collect a wide range of dialogue tasks spanning diverse features of knowledge, personality, multi-turn memory, and empathy, on which we further instruction tune \modelname via unified natural language instruction templates. External knowledge from an internet search is also used during instruction finetuning for alleviating the problem of knowledge hallucinations. We show that \modelname outperforms state-of-the-art Chinese dialogue systems on both automatic and human evaluation, and demonstrates strong multi-task generalization on a variety of text understanding and generation tasks. In addition, we deploy \modelname to real-world applications such as Smart Speaker and Instant Message applications with fast inference. Our models and code will be made publicly available on ModelScope: https://modelscope.cn/models/damo/ChatPLUG-3.7B and Github: https://github.com/X-PLUG/ChatPLUG .