Goto

Collaborating Authors

 Zhang, Jiahao


Enhance GNNs with Reliable Confidence Estimation via Adversarial Calibration Learning

arXiv.org Artificial Intelligence

Despite their impressive predictive performance, GNNs often exhibit poor confidence calibration, i.e., their predicted confidence scores do not accurately reflect true correctness likelihood. This issue raises concerns about their reliability in high-stakes domains such as fraud detection, and risk assessment, where well-calibrated predictions are essential for decision-making. To ensure trustworthy predictions, several GNN calibration methods are proposed. Though they can improve global calibration, our experiments reveal that they often fail to generalize across different node groups, leading to inaccurate confidence in node groups with different degree levels, classes, and local structures. In certain cases, they even degrade calibration compared to the original uncalibrated GNN. To address this challenge, we propose a novel AdvCali framework that adaptively enhances calibration across different node groups. Our method leverages adversarial training to automatically identify mis-calibrated node groups and applies a differentiable Group Expected Calibration Error (ECE) loss term to refine confidence estimation within these groups. This allows the model to dynamically adjust its calibration strategy without relying on dataset-specific prior knowledge about miscalibrated subgroups. Extensive experiments on real-world datasets demonstrate that our approach not only improves global calibration but also significantly enhances calibration within groups defined by feature similarity, topology, and connectivity, outperforming previous methods and demonstrating its effectiveness in practical scenarios.


MEET: A Million-Scale Dataset for Fine-Grained Geospatial Scene Classification with Zoom-Free Remote Sensing Imagery

arXiv.org Artificial Intelligence

Accurate fine-grained geospatial scene classification using remote sensing imagery is essential for a wide range of applications. However, existing approaches often rely on manually zooming remote sensing images at different scales to create typical scene samples. This approach fails to adequately support the fixed-resolution image interpretation requirements in real-world scenarios. To address this limitation, we introduce the Million-scale finE-grained geospatial scEne classification dataseT (MEET), which contains over 1.03 million zoom-free remote sensing scene samples, manually annotated into 80 fine-grained categories. In MEET, each scene sample follows a scene-inscene layout, where the central scene serves as the reference, and auxiliary scenes provide crucial spatial context for finegrained classification. Moreover, to tackle the emerging challenge of scene-in-scene classification, we present the Context-Aware Transformer (CAT), a model specifically designed for this task, which adaptively fuses spatial context to accurately classify the scene samples. CAT adaptively fuses spatial context to accurately classify the scene samples by learning attentional features that capture the relationships between the center and auxiliary scenes. Based on MEET, we establish a comprehensive benchmark for fine-grained geospatial scene classification, evaluating CAT against 11 competitive baselines. The results demonstrate that CAT significantly outperforms these baselines, achieving a 1.88% higher balanced accuracy (BA) with the Swin-Large backbone, and a notable 7.87% improvement with the Swin-Huge backbone. Further experiments validate the effectiveness of each module in CAT and show the practical applicability of CAT in the urban functional zone mapping. The source code and dataset will be publicly available at https://jerrywyn.github.io/project/MEET.html.


Text-to-Image Diffusion Models Cannot Count, and Prompt Refinement Cannot Help

arXiv.org Artificial Intelligence

Generative modeling is widely regarded as one of the most essential problems in today's AI community, with text-to-image generation having gained unprecedented real-world impacts. Among various approaches, diffusion models have achieved remarkable success and have become the de facto solution for text-to-image generation. However, despite their impressive performance, these models exhibit fundamental limitations in adhering to numerical constraints in user instructions, frequently generating images with an incorrect number of objects. While several prior works have mentioned this issue, a comprehensive and rigorous evaluation of this limitation remains lacking. To address this gap, we introduce T2ICountBench, a novel benchmark designed to rigorously evaluate the counting ability of state-of-the-art text-to-image diffusion models. Our benchmark encompasses a diverse set of generative models, including both open-source and private systems. It explicitly isolates counting performance from other capabilities, provides structured difficulty levels, and incorporates human evaluations to ensure high reliability. Extensive evaluations with T2ICountBench reveal that all state-of-the-art diffusion models fail to generate the correct number of objects, with accuracy dropping significantly as the number of objects increases. Additionally, an exploratory study on prompt refinement demonstrates that such simple interventions generally do not improve counting accuracy. Our findings highlight the inherent challenges in numerical understanding within diffusion models and point to promising directions for future improvements.


Integrated Computation and Communication with Fiber-optic Transmissions

arXiv.org Artificial Intelligence

Abstract: Fiber - optic transmission systems are leveraged not only as high - speed communication channels but also as nonlinear kernel functions for machine learning computations, enabling the seamless integration of computational intelligence and communication . Over the past few decades, the field of communication has undergone remarkable transformations, driven by advancements in network architecture and transmission technologies. Simultaneously, the emergence of machine learning (ML) has revolutionized various industries, p aving the way for intelligent communication networks [1] . As outlined in the IMT - 2030 framework [2], the future of communication systems lies in the seamless integration of ML with communication technologies, a devel opment that is expected to redefine the capabilities of these networks. This integration is particularly critical for applications like semantic communication, which demand a unified approach to bridging the physical and cyber domains.


Dissecting Submission Limit in Desk-Rejections: A Mathematical Analysis of Fairness in AI Conference Policies

arXiv.org Artificial Intelligence

As AI research surges in both impact and volume, conferences have imposed submission limits to maintain paper quality and alleviate organizational pressure. In this work, we examine the fairness of desk-rejection systems under submission limits and reveal that existing practices can result in substantial inequities. Specifically, we formally define the paper submission limit problem and identify a critical dilemma: when the number of authors exceeds three, it becomes impossible to reject papers solely based on excessive submissions without negatively impacting innocent authors. Thus, this issue may unfairly affect early-career researchers, as their submissions may be penalized due to co-authors with significantly higher submission counts, while senior researchers with numerous papers face minimal consequences. To address this, we propose an optimization-based fairness-aware desk-rejection mechanism and formally define two fairness metrics: individual fairness and group fairness. We prove that optimizing individual fairness is NP-hard, whereas group fairness can be efficiently optimized via linear programming. Through case studies, we demonstrate that our proposed system ensures greater equity than existing methods, including those used in CVPR 2025, offering a more socially just approach to managing excessive submissions in AI conferences.


Indiana Jones: There Are Always Some Useful Ancient Relics

arXiv.org Artificial Intelligence

This paper introduces Indiana Jones, an innovative approach to jailbreaking Large Language Models (LLMs) by leveraging inter-model dialogues and keyword-driven prompts. Through orchestrating interactions among three specialised LLMs, the method achieves near-perfect success rates in bypassing content safeguards in both white-box and black-box LLMs. The research exposes systemic vulnerabilities within contemporary models, particularly their susceptibility to producing harmful or unethical outputs when guided by ostensibly innocuous prompts framed in historical or contextual contexts. Experimental evaluations highlight the efficacy and adaptability of Indiana Jones, demonstrating its superiority over existing jailbreak methods. These findings emphasise the urgent need for enhanced ethical safeguards and robust security measures in the development of LLMs. Moreover, this work provides a critical foundation for future studies aimed at fortifying LLMs against adversarial exploitation while preserving their utility and flexibility.


ADKGD: Anomaly Detection in Knowledge Graphs with Dual-Channel Training

arXiv.org Artificial Intelligence

In the current development of large language models (LLMs), it is important to ensure the accuracy and reliability of the underlying data sources. LLMs are critical for various applications, but they often suffer from hallucinations and inaccuracies due to knowledge gaps in the training data. Knowledge graphs (KGs), as a powerful structural tool, could serve as a vital external information source to mitigate the aforementioned issues. By providing a structured and comprehensive understanding of real-world data, KGs enhance the performance and reliability of LLMs. However, it is common that errors exist in KGs while extracting triplets from unstructured data to construct KGs. This could lead to degraded performance in downstream tasks such as question-answering and recommender systems. Therefore, anomaly detection in KGs is essential to identify and correct these errors. This paper presents an anomaly detection algorithm in knowledge graphs with dual-channel learning (ADKGD). ADKGD leverages a dual-channel learning approach to enhance representation learning from both the entity-view and triplet-view perspectives. Furthermore, using a cross-layer approach, our framework integrates internal information aggregation and context information aggregation. We introduce a kullback-leibler (KL)-loss component to improve the accuracy of the scoring function between the dual channels. To evaluate ADKGD's performance, we conduct empirical studies on three real-world KGs: WN18RR, FB15K, and NELL-995. Experimental results demonstrate that ADKGD outperforms the state-of-the-art anomaly detection algorithms. The source code and datasets are publicly available at https://github.com/csjywu1/ADKGD.


On the Computational Capability of Graph Neural Networks: A Circuit Complexity Bound Perspective

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have become the standard approach for learning and reasoning over relational data, leveraging the message-passing mechanism that iteratively propagates node embeddings through graph structures. While GNNs have achieved significant empirical success, their theoretical limitations remain an active area of research. Existing studies primarily focus on characterizing GNN expressiveness through Weisfeiler-Lehman (WL) graph isomorphism tests. In this paper, we take a fundamentally different approach by exploring the computational limitations of GNNs through the lens of circuit complexity. Specifically, we analyze the circuit complexity of common GNN architectures and prove that under constraints of constant-depth layers, linear or sublinear embedding sizes, and polynomial precision, GNNs cannot solve key problems such as graph connectivity and graph isomorphism unless $\mathsf{TC}^0 = \mathsf{NC}^1$. These results reveal the intrinsic expressivity limitations of GNNs behind their empirical success and introduce a novel framework for analyzing GNN expressiveness that can be extended to a broader range of GNN models and graph decision problems.


Distilling Desired Comments for Enhanced Code Review with Large Language Models

arXiv.org Artificial Intelligence

There has been a growing interest in using Large Language Models (LLMs) for code review thanks to their proven proficiency in code comprehension. The primary objective of most review scenarios is to generate desired review comments (DRCs) that explicitly identify issues to trigger code fixes. However, existing LLM-based solutions are not so effective in generating DRCs for various reasons such as hallucination. To enhance their code review ability, they need to be fine-tuned with a customized dataset that is ideally full of DRCs. Nevertheless, such a dataset is not yet available, while manual annotation of DRCs is too laborious to be practical. In this paper, we propose a dataset distillation method, Desiview, which can automatically construct a distilled dataset by identifying DRCs from a code review dataset. Experiments on the CodeReviewer dataset comprising more than 150K review entries show that Desiview achieves an impressive performance of 88.93%, 80.37%, 86.67%, and 84.44% in terms of Precision, Recall, Accuracy, and F1, respectively, surpassing state-of-the-art methods. To validate the effect of such a distilled dataset on enhancing LLMs' code review ability, we first fine-tune the latest LLaMA series (i.e., LLaMA 3 and LLaMA 3.1) to build model Desiview4FT. We then enhance the model training effect through KTO alignment by feeding those review comments identified as non-DRCs to the LLMs, resulting in model Desiview4FA. Verification results indicate that Desiview4FA slightly outperforms Desiview4FT, while both models have significantly improved against the base models in terms of generating DRCs. Human evaluation confirms that both models identify issues more accurately and tend to generate review comments that better describe the issues contained in the code than the base LLMs do.


Score-based Generative Diffusion Models for Social Recommendations

arXiv.org Artificial Intelligence

With the prevalence of social networks on online platforms, social recommendation has become a vital technique for enhancing personalized recommendations. The effectiveness of social recommendations largely relies on the social homophily assumption, which presumes that individuals with social connections often share similar preferences. However, this foundational premise has been recently challenged due to the inherent complexity and noise present in real-world social networks. In this paper, we tackle the low social homophily challenge from an innovative generative perspective, directly generating optimal user social representations that maximize consistency with collaborative signals. Specifically, we propose the Score-based Generative Model for Social Recommendation (SGSR), which effectively adapts the Stochastic Differential Equation (SDE)-based diffusion models for social recommendations. To better fit the recommendation context, SGSR employs a joint curriculum training strategy to mitigate challenges related to missing supervision signals and leverages self-supervised learning techniques to align knowledge across social and collaborative domains. Extensive experiments on real-world datasets demonstrate the effectiveness of our approach in filtering redundant social information and improving recommendation performance.