Goto

Collaborating Authors

 Zhang, Hongjiang


Rapid Inference on a Novel AND/OR graph for Object Detection, Segmentation and Parsing

Neural Information Processing Systems

In this paper we formulate a novel AND/OR graph representation capable of describing thedifferent configurations of deformable articulated objects such as horses. The representation makes use of the summarization principle so that lower level nodes in the graph only pass on summary statistics to the higher level nodes. The probability distributions are invariant to position, orientation, and scale. We develop a novel inference algorithm that combined a bottom-up process for proposing configurations for horses together with a top-down process for refining and validating these proposals. The strategy of surround suppression isapplied to ensure that the inference time is polynomial in the size of input data. The algorithm was applied to the tasks of detecting, segmenting and parsing horses. We demonstrate that the algorithm is fast and comparable with the state of the art approaches.


FloatBoost Learning for Classification

Neural Information Processing Systems

AdaBoost [3] minimizes an upper error bound which is an exponential function of the margin on the training set [14]. However, the ultimate goal in applications of pattern classification is always minimum error rate. On the other hand, AdaBoost needs an effective procedure for learning weak classifiers, which by itself is difficult especially for high dimensional data. In this paper, we present a novel procedure, called FloatBoost, for learning a better boosted classifier. FloatBoost uses a backtrack mechanism after each iteration of AdaBoost to remove weak classifiers which cause higher error rates. The resulting float-boosted classifier consists of fewer weak classifiers yet achieves lower error rates than AdaBoost in both training and test. We also propose a statistical model for learning weak classifiers, based on a stagewise approximation of the posterior using an overcomplete set of scalar features. Experimental comparisons of FloatBoost and AdaBoost are provided through a difficult classification problem, face detection, where the goal is to learn from training examples a highly nonlinear classifier to differentiate between face and nonface patterns in a high dimensional space. The results clearly demonstrate the promises made by FloatBoost over AdaBoost.


FloatBoost Learning for Classification

Neural Information Processing Systems

AdaBoost [3] minimizes an upper error bound which is an exponential function of the margin on the training set [14]. However, the ultimate goal in applications of pattern classification is always minimum error rate. On the other hand, AdaBoost needs an effective procedure for learning weak classifiers, which by itself is difficult especially for high dimensional data. In this paper, we present a novel procedure, called FloatBoost, for learning a better boosted classifier. FloatBoost uses a backtrack mechanism after each iteration of AdaBoost to remove weak classifiers which cause higher error rates. The resulting float-boosted classifier consists of fewer weak classifiers yet achieves lower error rates than AdaBoost in both training and test. We also propose a statistical model for learning weak classifiers, based on a stagewise approximation of the posterior using an overcomplete set of scalar features. Experimental comparisons of FloatBoost and AdaBoost are provided through a difficult classification problem, face detection, where the goal is to learn from training examples a highly nonlinear classifier to differentiate between face and nonface patterns in a high dimensional space. The results clearly demonstrate the promises made by FloatBoost over AdaBoost.


FloatBoost Learning for Classification

Neural Information Processing Systems

AdaBoost [3] minimizes an upper error bound which is an exponential function of the margin on the training set [14]. However, the ultimate goal in applications of pattern classification is always minimum error rate. On the other hand, AdaBoost needs an effective procedure for learning weak classifiers, which by itself is difficult especially for high dimensional data. In this paper, we present a novel procedure, called FloatBoost, for learning a better boosted classifier. FloatBoost uses a backtrack mechanism after each iteration of AdaBoost to remove weak classifiers which cause higher error rates. The resulting float-boosted classifier consists of fewer weak classifiers yet achieves lower error rates than AdaBoost in both training and test. We also propose a statistical model for learning weak classifiers, based on a stagewise approximation of the posterior using an overcomplete set of scalar features. Experimental comparisonsof FloatBoost and AdaBoost are provided through a difficult classification problem, face detection, where the goal is to learn from training examples a highly nonlinear classifier to differentiate between faceand nonface patterns in a high dimensional space. The results clearly demonstrate the promises made by FloatBoost over AdaBoost.