Goto

Collaborating Authors

 Zhang, Hongbao


BoT: Breaking Long Thought Processes of o1-like Large Language Models through Backdoor Attack

arXiv.org Artificial Intelligence

Longer thought, better performance: large language models with deep reasoning capabilities, particularly o1-like models, have demonstrated remarkable performance by generating extensive thought processes during inference. This trade-off reveals a potential vulnerability: adversaries could compromise model performance by forcing immediate responses without thought processes. To this end, in this paper, we introduce a novel attack scenario targeting the long thought processes of o1-like models and propose BoT (Break CoT), which can selectively break intrinsic reasoning mechanisms through backdoor attacks. BoT constructs poisoned datasets with designed triggers and injects backdoor by either supervised fine-tuning or direct preference optimization. When triggered, the model directly generates answers without thought processes, while maintaining normal reasoning capabilities for clean inputs. Extensive experiments on open-source o1-like models, including recent DeepSeek-R1, demonstrate that BoT nearly achieves high attack success rates while maintaining clean accuracy, highlighting the critical safety risk in current models. Furthermore, the relationship between task difficulty and helpfulness reveals a potential application for good, enabling users to customize model behavior based on task complexity. Code is available at \href{https://github.com/zihao-ai/BoT}{https://github.com/zihao-ai/BoT}.


HMGIE: Hierarchical and Multi-Grained Inconsistency Evaluation for Vision-Language Data Cleansing

arXiv.org Artificial Intelligence

Visual-textual inconsistency (VTI) evaluation plays a crucial role in cleansing vision-language data. Its main challenges stem from the high variety of image captioning datasets, where differences in content can create a range of inconsistencies (\eg, inconsistencies in scene, entities, entity attributes, entity numbers, entity interactions). Moreover, variations in caption length can introduce inconsistencies at different levels of granularity as well. To tackle these challenges, we design an adaptive evaluation framework, called Hierarchical and Multi-Grained Inconsistency Evaluation (HMGIE), which can provide multi-grained evaluations covering both accuracy and completeness for various image-caption pairs. Specifically, the HMGIE framework is implemented by three consecutive modules. Firstly, the semantic graph generation module converts the image caption to a semantic graph for building a structural representation of all involved semantic items. Then, the hierarchical inconsistency evaluation module provides a progressive evaluation procedure with a dynamic question-answer generation and evaluation strategy guided by the semantic graph, producing a hierarchical inconsistency evaluation graph (HIEG). Finally, the quantitative evaluation module calculates the accuracy and completeness scores based on the HIEG, followed by a natural language explanation about the detection results. Moreover, to verify the efficacy and flexibility of the proposed framework on handling different image captioning datasets, we construct MVTID, an image-caption dataset with diverse types and granularities of inconsistencies. Extensive experiments on MVTID and other benchmark datasets demonstrate the superior performance of the proposed HMGIE to current state-of-the-art methods.


Missing Value Imputation Based on Deep Generative Models

arXiv.org Machine Learning

Missing values widely exist in many real-world datasets, which hinders the performing of advanced data analytics. Properly filling these missing values is crucial but challenging, especially when the missing rate is high. Many approaches have been proposed for missing value imputation (MVI), but they are mostly heuristics-based, lacking a principled foundation and do not perform satisfactorily in practice. In this paper, we propose a probabilistic framework based on deep generative models for MVI. Under this framework, imputing the missing entries amounts to seeking a fixed-point solution between two conditional distributions defined on the missing entries and latent variables respectively. These distributions are parameterized by deep neural networks (DNNs) which possess high approximation power and can capture the nonlinear relationships between missing entries and the observed values. The learning of weight parameters of DNNs is performed by maximizing an approximation of the log-likelihood of observed values. We conducted extensive evaluation on 13 datasets and compared with 11 baselines methods, where our methods largely outperforms the baselines.


Learning Less-Overlapping Representations

arXiv.org Machine Learning

In representation learning (RL), how to make the learned representations easy to interpret and less overfitted to training data are two important but challenging issues. To address these problems, we study a new type of regulariza- tion approach that encourages the supports of weight vectors in RL models to have small overlap, by simultaneously promoting near-orthogonality among vectors and sparsity of each vector. We apply the proposed regularizer to two models: neural networks (NNs) and sparse coding (SC), and develop an efficient ADMM-based algorithm for regu- larized SC. Experiments on various datasets demonstrate that weight vectors learned under our regularizer are more interpretable and have better generalization performance.