Zhang, Haochen
IRef-VLA: A Benchmark for Interactive Referential Grounding with Imperfect Language in 3D Scenes
Zhang, Haochen, Zantout, Nader, Kachana, Pujith, Zhang, Ji, Wang, Wenshan
With the recent rise of large language models, vision-language models, and other general foundation models, there is growing potential for multimodal, multi-task robotics that can operate in diverse environments given natural language input. One such application is indoor navigation using natural language instructions. However, despite recent progress, this problem remains challenging due to the 3D spatial reasoning and semantic understanding required. Additionally, the language used may be imperfect or misaligned with the scene, further complicating the task. To address this challenge, we curate a benchmark dataset, IRef-VLA, for Interactive Referential Vision and Language-guided Action in 3D Scenes with imperfect references. IRef-VLA is the largest real-world dataset for the referential grounding task, consisting of over 11.5K scanned 3D rooms from existing datasets, 7.6M heuristically generated semantic relations, and 4.7M referential statements. Our dataset also contains semantic object and room annotations, scene graphs, navigable free space annotations, and is augmented with statements where the language has imperfections or ambiguities. We verify the generalizability of our dataset by evaluating with state-of-the-art models to obtain a performance baseline and also develop a graph-search baseline to demonstrate the performance bound and generation of alternatives using scene-graph knowledge. With this benchmark, we aim to provide a resource for 3D scene understanding that aids the development of robust, interactive navigation systems. The dataset and all source code is publicly released at https://github.com/HaochenZ11/IRef-VLA.
I3S: Importance Sampling Subspace Selection for Low-Rank Optimization in LLM Pretraining
Zhang, Haochen, Yin, Junze, Wang, Guanchu, Liu, Zirui, Zhang, Tianyi, Shrivastava, Anshumali, Yang, Lin, Braverman, Vladimir
Low-rank optimization has emerged as a promising approach to enabling memory-efficient training of large language models (LLMs). Existing low-rank optimization methods typically project gradients onto a low-rank subspace, reducing the memory cost of storing optimizer states. A key challenge in these methods is identifying suitable subspaces to ensure an effective optimization trajectory. Most existing approaches select the dominant subspace to preserve gradient information, as this intuitively provides the best approximation. However, we find that in practice, the dominant subspace stops changing during pretraining, thereby constraining weight updates to similar subspaces. In this paper, we propose importance sampling subspace selection (I3S) for low-rank optimization, which theoretically offers a comparable convergence rate to the dominant subspace approach. Empirically, we demonstrate that I3S significantly outperforms previous methods in LLM pretraining tasks.
Gap-Dependent Bounds for Federated $Q$-learning
Zhang, Haochen, Zheng, Zhong, Xue, Lingzhou
We present the first gap-dependent analysis of regret and communication cost for on-policy federated $Q$-Learning in tabular episodic finite-horizon Markov decision processes (MDPs). Existing FRL methods focus on worst-case scenarios, leading to $\sqrt{T}$-type regret bounds and communication cost bounds with a $\log T$ term scaling with the number of agents $M$, states $S$, and actions $A$, where $T$ is the average total number of steps per agent. In contrast, our novel framework leverages the benign structures of MDPs, such as a strictly positive suboptimality gap, to achieve a $\log T$-type regret bound and a refined communication cost bound that disentangles exploration and exploitation. Our gap-dependent regret bound reveals a distinct multi-agent speedup pattern, and our gap-dependent communication cost bound removes the dependence on $MSA$ from the $\log T$ term. Notably, our gap-dependent communication cost bound also yields a better global switching cost when $M=1$, removing $SA$ from the $\log T$ term.
VLA-3D: A Dataset for 3D Semantic Scene Understanding and Navigation
Zhang, Haochen, Zantout, Nader, Kachana, Pujith, Wu, Zongyuan, Zhang, Ji, Wang, Wenshan
With the recent rise of Large Language Models (LLMs), Vision-Language Models (VLMs), and other general foundation models, there is growing potential for multimodal, multi-task embodied agents that can operate in diverse environments given only natural language as input. One such application area is indoor navigation using natural language instructions. However, despite recent progress, this problem remains challenging due to the spatial reasoning and semantic understanding required, particularly in arbitrary scenes that may contain many objects belonging to fine-grained classes. To address this challenge, we curate the largest real-world dataset for Vision and Language-guided Action in 3D Scenes (VLA-3D), consisting of over 11.5K scanned 3D indoor rooms from existing datasets, 23.5M heuristically generated semantic relations between objects, and 9.7M synthetically generated referential statements. Our dataset consists of processed 3D point clouds, semantic object and room annotations, scene graphs, navigable free space annotations, and referential language statements that specifically focus on view-independent spatial relations for disambiguating objects. The goal of these features is to aid the downstream task of navigation, especially on real-world systems where some level of robustness must be guaranteed in an open world of changing scenes and imperfect language. We benchmark our dataset with current state-of-the-art models to obtain a performance baseline. All code to generate and visualize the dataset is publicly released, see https://github.com/HaochenZ11/VLA-3D. With the release of this dataset, we hope to provide a resource for progress in semantic 3D scene understanding that is robust to changes and one which will aid the development of interactive indoor navigation systems.
Statistical Guarantees for Lifelong Reinforcement Learning using PAC-Bayesian Theory
Zhang, Zhi, Chow, Chris, Zhang, Yasi, Sun, Yanchao, Zhang, Haochen, Jiang, Eric Hanchen, Liu, Han, Huang, Furong, Cui, Yuchen, Padilla, Oscar Hernan Madrid
Lifelong reinforcement learning (RL) has been developed as a paradigm for extending single-task RL to more realistic, dynamic settings. In lifelong RL, the "life" of an RL agent is modeled as a stream of tasks drawn from a task distribution. We propose EPIC (\underline{E}mpirical \underline{P}AC-Bayes that \underline{I}mproves \underline{C}ontinuously), a novel algorithm designed for lifelong RL using PAC-Bayes theory. EPIC learns a shared policy distribution, referred to as the \textit{world policy}, which enables rapid adaptation to new tasks while retaining valuable knowledge from previous experiences. Our theoretical analysis establishes a relationship between the algorithm's generalization performance and the number of prior tasks preserved in memory. We also derive the sample complexity of EPIC in terms of RL regret. Extensive experiments on a variety of environments demonstrate that EPIC significantly outperforms existing methods in lifelong RL, offering both theoretical guarantees and practical efficacy through the use of the world policy.
Gap-Dependent Bounds for Q-Learning using Reference-Advantage Decomposition
Zheng, Zhong, Zhang, Haochen, Xue, Lingzhou
We study the gap-dependent bounds of two important algorithms for on-policy Q-learning for finite-horizon episodic tabular Markov Decision Processes (MDPs): UCB-Advantage (Zhang et al. 2020) and Q-EarlySettled-Advantage (Li et al. 2021). UCB-Advantage and Q-EarlySettled-Advantage improve upon the results based on Hoeffding-type bonuses and achieve the almost optimal $\sqrt{T}$-type regret bound in the worst-case scenario, where $T$ is the total number of steps. However, the benign structures of the MDPs such as a strictly positive suboptimality gap can significantly improve the regret. While gap-dependent regret bounds have been obtained for Q-learning with Hoeffding-type bonuses, it remains an open question to establish gap-dependent regret bounds for Q-learning using variance estimators in their bonuses and reference-advantage decomposition for variance reduction. We develop a novel error decomposition framework to prove gap-dependent regret bounds of UCB-Advantage and Q-EarlySettled-Advantage that are logarithmic in $T$ and improve upon existing ones for Q-learning algorithms. Moreover, we establish the gap-dependent bound for the policy switching cost of UCB-Advantage and improve that under the worst-case MDPs. To our knowledge, this paper presents the first gap-dependent regret analysis for Q-learning using variance estimators and reference-advantage decomposition and also provides the first gap-dependent analysis on policy switching cost for Q-learning.
Federated Q-Learning with Reference-Advantage Decomposition: Almost Optimal Regret and Logarithmic Communication Cost
Zheng, Zhong, Zhang, Haochen, Xue, Lingzhou
Federated reinforcement learning (FRL) is a distributed learning framework that combines the principles of reinforcement learning (RL) [1] and federated learning (FL) [2]. Focusing on sequential decision-making, FRL aims to learn an optimal policy through parallel explorations by multiple agents under the coordination of a central server. Often modeled as a Markov decision process (MDP), multiple agents independently interact with an initially unknown environment and collaboratively train their decision-making models with limited information exchange between the agents. This approach accelerates the learning process with low communication costs. Some model-based algorithms (e.g., [3]) and policy-based algorithms (e.g., [4]) have shown speedup with respect to the number of agents in terms of learning regret or convergence rate. Recent progress has been made in FRL algorithms based on model-free value-based approaches, which directly learn the value functions and the optimal policy without estimating the underlying model (e.g., [5]). However, most existing model-free federated algorithms do not actively update the exploration policies for local agents and fail to provide low regret. A comprehensive literature review is provided in Appendix A.
Jellyfish: A Large Language Model for Data Preprocessing
Zhang, Haochen, Dong, Yuyang, Xiao, Chuan, Oyamada, Masafumi
In this paper, we present Jellyfish, an open-source LLM as a universal task solver for DP. Built on the Llama 2 13B model, Jellyfish is instruction-tuned with the datasets of several typical DP tasks including error detection, data imputation, schema matching, and entity matching, and delivers generalizability to other tasks. Remarkably, Jellyfish can operate on a local, single, and low-priced GPU with its 13 billion parameters, ensuring data security and enabling further tuning. Its proficiency in understanding natural language allows users to manually craft instructions for DP tasks. Unlike many existing methods that heavily rely on prior knowledge, Jellyfish acquires domain knowledge during its tuning process and integrates optional knowledge injection during inference. A distinctive feature of Jellyfish is its interpreter, which elucidates its output decisions. To construct Jellyfish, we develop a series of pre-tuning and DP-tuning techniques. Jellyfish is equipped with an instance serializer, which automatically translates raw data into model prompts, and a knowledge injector, which optionally introduces task- and dataset-specific knowledge to enhance DP performance. Our evaluation of Jellyfish, using a range of real datasets, shows its competitiveness compared to state-of-the-art methods and its strong generalizability to unseen tasks. Jellyfish's performance rivals that of GPT series models, and its interpreter offers enhanced reasoning capabilities compared to GPT-3.5. Furthermore, our evaluation highlights the effectiveness of the techniques employed in constructing Jellyfish. Our model is available at Hugging Face: https://huggingface.co/NECOUDBFM/Jellyfish .
Adaptive Liquidity Provision in Uniswap V3 with Deep Reinforcement Learning
Zhang, Haochen, Chen, Xi, Yang, Lin F.
Decentralized exchanges (DEXs) are a cornerstone of decentralized finance (DeFi), allowing users to trade cryptocurrencies without the need for third-party authorization. Investors are incentivized to deposit assets into liquidity pools, against which users can trade directly, while paying fees to liquidity providers (LPs). However, a number of unresolved issues related to capital efficiency and market risk hinder DeFi's further development. Uniswap V3, a leading and groundbreaking DEX project, addresses capital efficiency by enabling LPs to concentrate their liquidity within specific price ranges for deposited assets. Nevertheless, this approach exacerbates market risk, as LPs earn trading fees only when asset prices are within these predetermined brackets. To mitigate this issue, this paper introduces a deep reinforcement learning (DRL) solution designed to adaptively adjust these price ranges, maximizing profits and mitigating market risks. Our approach also neutralizes price-change risks by hedging the liquidity position through a rebalancing portfolio in a centralized futures exchange. The DRL policy aims to optimize trading fees earned by LPs against associated costs, such as gas fees and hedging expenses, which is referred to as loss-versus-rebalancing (LVR). Using simulations with a profit-and-loss (PnL) benchmark, our method demonstrates superior performance in ETH/USDC and ETH/USDT pools compared to existing baselines. We believe that this strategy not only offers investors a valuable asset management tool but also introduces a new incentive mechanism for DEX designers.
Large Language Models as Data Preprocessors
Zhang, Haochen, Dong, Yuyang, Xiao, Chuan, Oyamada, Masafumi
Large Language Models (LLMs), typified by OpenAI's GPT series and Meta's LLaMA variants, have marked a significant advancement in artificial intelligence. Trained on vast amounts of text data, LLMs are capable of understanding and generating human-like text across a diverse range of topics. This study expands on the applications of LLMs, exploring their potential in data preprocessing, a critical stage in data mining and analytics applications. We delve into the applicability of state-of-the-art LLMs such as GPT-3.5, GPT-4, and Vicuna-13B for error detection, data imputation, schema matching, and entity matching tasks. Alongside showcasing the inherent capabilities of LLMs, we highlight their limitations, particularly in terms of computational expense and inefficiency. We propose an LLM-based framework for data preprocessing, which integrates cutting-edge prompt engineering techniques, coupled with traditional methods like contextualization and feature selection, to improve the performance and efficiency of these models. The effectiveness of LLMs in data preprocessing is evaluated through an experimental study spanning 12 datasets. GPT-4 emerged as a standout, achieving 100\% accuracy or F1 score on 4 datasets, suggesting LLMs' immense potential in these tasks. Despite certain limitations, our study underscores the promise of LLMs in this domain and anticipates future developments to overcome current hurdles.