Zhang, Hao
Deep Poisson gamma dynamical systems
Guo, Dandan, Chen, Bo, Zhang, Hao, Zhou, Mingyuan
We develop deep Poisson-gamma dynamical systems (DPGDS) to model sequentially observed multivariate count data, improving previously proposed models by not only mining deep hierarchical latent structure from the data, but also capturing both first-order and long-range temporal dependencies. Using sophisticated but simple-to-implement data augmentation techniques, we derived closed-form Gibbs sampling update equations by first backward and upward propagating auxiliary latent counts, and then forward and downward sampling latent variables. Moreover, we develop stochastic gradient MCMC inference that is scalable to very long multivariate count time series. Experiments on both synthetic and a variety of real-world data demonstrate that the proposed model not only has excellent predictive performance, but also provides highly interpretable multilayer latent structure to represent hierarchical and temporal information propagation.
Symbolic Graph Reasoning Meets Convolutions
Liang, Xiaodan, Hu, Zhiting, Zhang, Hao, Lin, Liang, Xing, Eric P.
Beyond local convolution networks, we explore how to harness various external human knowledge for endowing the networks with the capability of semantic global reasoning. Rather than using separate graphical models (e.g. CRF) or constraints for modeling broader dependencies, we propose a new Symbolic Graph Reasoning (SGR) layer, which performs reasoning over a group of symbolic nodes whose outputs explicitly represent different properties of each semantic in a prior knowledge graph. To cooperate with local convolutions, each SGR is constituted by three modules: a) a primal local-to-semantic voting module where the features of all symbolic nodes are generated by voting from local representations; b) a graph reasoning module propagates information over knowledge graph to achieve global semantic coherency; c) a dual semantic-to-local mapping module learns new associations of the evolved symbolic nodes with local representations, and accordingly enhances local features. The SGR layer can be injected between any convolution layers and instantiated with distinct prior graphs. Extensive experiments show incorporating SGR significantly improves plain ConvNets on three semantic segmentation tasks and one image classification task. More analyses show the SGR layer learns shared symbolic representations for domains/datasets with the different label set given a universal knowledge graph, demonstrating its superior generalization capability.
Deep Poisson gamma dynamical systems
Guo, Dandan, Chen, Bo, Zhang, Hao, Zhou, Mingyuan
We develop deep Poisson-gamma dynamical systems (DPGDS) to model sequentially observedmultivariate count data, improving previously proposed models by not only mining deep hierarchical latent structure from the data, but also capturing both first-order and long-range temporal dependencies. Using sophisticated but simple-to-implement data augmentation techniques, we derived closed-form Gibbs sampling update equations by first backward and upward propagating auxiliary latent counts, and then forward and downward sampling latent variables. Moreover, wedevelop stochastic gradient MCMC inference that is scalable to very long multivariate count time series. Experiments on both synthetic and a variety of real-world data demonstrate that the proposed model not only has excellent predictive performance, but also provides highly interpretable multilayer latent structure to represent hierarchical and temporal information propagation.
Symbolic Graph Reasoning Meets Convolutions
Liang, Xiaodan, Hu, Zhiting, Zhang, Hao, Lin, Liang, Xing, Eric P.
Beyond local convolution networks, we explore how to harness various external human knowledge for endowing the networks with the capability of semantic global reasoning. Rather than using separate graphical models (e.g. CRF) or constraints for modeling broader dependencies, we propose a new Symbolic Graph Reasoning (SGR) layer, which performs reasoning over a group of symbolic nodes whose outputs explicitly represent different properties of each semantic in a prior knowledge graph. To cooperate with local convolutions, each SGR is constituted by three modules: a) a primal local-to-semantic voting module where the features of all symbolic nodes are generated by voting from local representations; b) a graph reasoning module propagates information over knowledge graph to achieve global semantic coherency; c) a dual semantic-to-local mapping module learns new associations of the evolved symbolic nodes with local representations, and accordingly enhances local features. The SGR layer can be injected between any convolution layers and instantiated with distinct prior graphs. Extensive experiments show incorporating SGR significantly improves plain ConvNets on three semantic segmentation tasks and one image classification task. More analyses show the SGR layer learns shared symbolic representations for domains/datasets with the different label set given a universal knowledge graph, demonstrating its superior generalization capability.
Nearly-tight bounds on linear regions of piecewise linear neural networks
Hu, Qiang, Zhang, Hao
The developments of deep neural networks (DNN) in recent years have ushered a brand new era of artificial intelligence. DNNs are proved to be excellent in solving very complex problems, e.g., visual recognition and text understanding, to the extent of competing with or even surpassing people. Despite inspiring and encouraging success of DNNs, thorough theoretical analyses still lack to unravel the mystery of their magics. The design of DNN structure is dominated by empirical results in terms of network depth, number of neurons and activations. A few of remarkable works published recently in an attempt to interpret DNNs have established the first glimpses of their internal mechanisms. Nevertheless, research on exploring how DNNs operate is still at the initial stage with plenty of room for refinement. In this paper, we extend precedent research on neural networks with piecewise linear activations (PLNN) concerning linear regions bounds. We present (i) the exact maximal number of linear regions for single layer PLNNs; (ii) a upper bound for multi-layer PLNNs; and (iii) a tighter upper bound for the maximal number of liner regions on rectifier networks. The derived bounds also indirectly explain why deep models are more powerful than shallow counterparts, and how non-linearity of activation functions impacts on expressiveness of networks.
Deep Poisson gamma dynamical systems
Guo, Dandan, Chen, Bo, Zhang, Hao, Zhou, Mingyuan
We develop deep Poisson-gamma dynamical systems (DPGDS) to model sequentially observed multivariate count data, improving previously proposed models by not only mining deep hierarchical latent structure from the data, but also capturing both first-order and long-range temporal dependencies. Using sophisticated but simple-to-implement data augmentation techniques, we derived closed-form Gibbs sampling update equations by first backward and upward propagating auxiliary latent counts, and then forward and downward sampling latent variables. Moreover, we develop stochastic gradient MCMC inference that is scalable to very long multivariate count time series. Experiments on both synthetic and a variety of real-world data demonstrate that the proposed model not only has excellent predictive performance, but also provides highly interpretable multilayer latent structure to represent hierarchical and temporal information propagation.
Hartley Spectral Pooling for Deep Learning
Zhang, Hao, Ma, Jianwei
In most convolution neural networks (CNNs), downsampling hidden layers is adopted for increasing computation efficiency and the receptive field size. Such operation is commonly so-called pooling. Maximation and averaging over sliding windows (max/average pooling), and plain downsampling in the form of strided convolution are popular pooling methods. Since the pooling is a lossy procedure, a motivation of our work is to design a new pooling approach for less lossy in the dimensionality reduction. Inspired by the Fourier spectral pooling(FSP) proposed by Rippel et. al. [1], we present the Hartley transform based spectral pooling method in CNNs. Compared with FSP, the proposed spectral pooling avoids the use of complex arithmetic for frequency representation and reduces the computation. Spectral pooling preserves more structure features for network's discriminability than max and average pooling. We empirically show that Hartley spectral pooling gives rise to the convergence of training CNNs on MNIST and CIFAR-10 datasets.
Toward Understanding the Impact of Staleness in Distributed Machine Learning
Dai, Wei, Zhou, Yi, Dong, Nanqing, Zhang, Hao, Xing, Eric P.
Many distributed machine learning (ML) systems adopt the nonsynchronous execution in order to alleviate the network communication bottleneck, resulting in stale parameters that do not reflect the latest updates. Despite much development in large-scale ML, the effects of staleness on learning are inconclusive as it is challenging to directly monitor or control staleness in complex distributed environments. In this work, we study the convergence behaviors of a wide array of ML models and algorithms under delayed updates. Our extensive experiments reveal the rich diversity of the effects of staleness on the convergence of ML algorithms and offer insights into seemingly contradictory reports in the literature. The empirical findings also inspire a new convergence analysis of stochastic gradient descent in non-convex optimization under staleness, matching the best-known convergence rate of O(1/ T). These works, however, point to seemingly contradictory conclusions on whether nonsynchronous execution outperforms synchronous counterparts in terms of absolute convergence, which is measured by the wall clock time to reach the desired model quality. For deep neural networks, Chilimbi et al. (2014); Dean et al. (2012) show that fully asynchronous systems achieve high scalability and model quality, but others argue that synchronous training converges faster (Chen et al., 2016; Cui et al., 2016). The disagreement goes beyond deep learning models: Ho et al. (2013); Zhang & Kwok (2014); Langford et al. (2009); Lian et al. (2015); Recht et al. (2011) empirically and theoretically show that many algorithms scale effectively under nonsynchronous settings, but McMahan & Streeter (2014); Mitliagkas et al. (2016); Hadjis et al. (2016) demonstrate significant penalties from asynchrony. The crux of the disagreement lies in the tradeoff between two factors contributing to the absolute convergence: statistical efficiency and system throughput. Nonsynchronous execution can improve system throughput due to lower synchronization overheads, which is well understood (Ho et al., 2013; Chen et al., 2016; Cui et al., 2014; Chilimbi et al., 2014).
Dual-label Deep LSTM Dereverberation For Speaker Verification
Zhang, Hao, Zahorian, Stephen, Chen, Xiao, Guzewich, Peter, Liu, Xiaoyu
In this paper, we present a reverberation removal approach for speaker verification, utilizing dual-label deep neural networks (DNNs). The networks perform feature mapping between the spectral features of reverberant and clean speech. Long short term memory recurrent neural networks (LSTMs) are trained to map corrupted Mel filterbank (MFB) features to two sets of labels: i) the clean MFB features, and ii) either estimated pitch tracks or the fast Fourier transform (FFT) spectrogram of clean speech. The performance of reverberation removal is evaluated by equal error rates (EERs) of speaker verification experiments.
UKP-Athene: Multi-Sentence Textual Entailment for Claim Verification
Hanselowski, Andreas, Zhang, Hao, Li, Zile, Sorokin, Daniil, Schiller, Benjamin, Schulz, Claudia, Gurevych, Iryna
The Fact Extraction and VERification (FEVER) shared task was launched to support the development of systems able to verify claims by extracting supporting or refuting facts from raw text. The shared task organizers provide a large-scale dataset for the consecutive steps involved in claim verification, in particular, document retrieval, fact extraction, and claim classification. In this paper, we present our claim verification pipeline approach, which, according to the preliminary results, scored third in the shared task, out of 23 competing systems. For the document retrieval, we implemented a new entity linking approach. In order to be able to rank candidate facts and classify a claim on the basis of several selected facts, we introduce two extensions to the Enhanced LSTM (ESIM).