Goto

Collaborating Authors

 Zhang, Hao


TransDiffSBDD: Causality-Aware Multi-Modal Structure-Based Drug Design

arXiv.org Artificial Intelligence

Structure-based drug design (SBDD) is a critical task in drug discovery, requiring the generation of molecular information across two distinct modalities: discrete molecular graphs and continuous 3D coordinates. However, existing SBDD methods often overlook two key challenges: (1) the multi-modal nature of this task and (2) the causal relationship between these modalities, limiting their plausibility and performance. To address both challenges, we propose TransDiffSBDD, an integrated framework combining autoregressive transformers and diffusion models for SBDD. Specifically, the autoregressive transformer models discrete molecular information, while the diffusion model samples continuous distributions, effectively resolving the first challenge. To address the second challenge, we design a hybrid-modal sequence for protein-ligand complexes that explicitly respects the causality between modalities. Experiments on the CrossDocked2020 benchmark demonstrate that TransDiffSBDD outperforms existing baselines.


Scalable Trajectory-User Linking with Dual-Stream Representation Networks

arXiv.org Artificial Intelligence

Trajectory-user linking (TUL) aims to match anonymous trajectories to the most likely users who generated them, offering benefits for a wide range of real-world spatio-temporal applications. However, existing TUL methods are limited by high model complexity and poor learning of the effective representations of trajectories, rendering them ineffective in handling large-scale user trajectory data. In this work, we propose a novel $\underline{Scal}$abl$\underline{e}$ Trajectory-User Linking with dual-stream representation networks for large-scale $\underline{TUL}$ problem, named ScaleTUL. Specifically, ScaleTUL generates two views using temporal and spatial augmentations to exploit supervised contrastive learning framework to effectively capture the irregularities of trajectories. In each view, a dual-stream trajectory encoder, consisting of a long-term encoder and a short-term encoder, is designed to learn unified trajectory representations that fuse different temporal-spatial dependencies. Then, a TUL layer is used to associate the trajectories with the corresponding users in the representation space using a two-stage training model. Experimental results on check-in mobility datasets from three real-world cities and the nationwide U.S. demonstrate the superiority of ScaleTUL over state-of-the-art baselines for large-scale TUL tasks.


GR00T N1: An Open Foundation Model for Generalist Humanoid Robots

arXiv.org Artificial Intelligence

General-purpose robots need a versatile body and an intelligent mind. Recent advancements in humanoid robots have shown great promise as a hardware platform for building generalist autonomy in the human world. A robot foundation model, trained on massive and diverse data sources, is essential for enabling the robots to reason about novel situations, robustly handle real-world variability, and rapidly learn new tasks. To this end, we introduce GR00T N1, an open foundation model for humanoid robots. GR00T N1 is a Vision-Language-Action (VLA) model with a dual-system architecture. The vision-language module (System 2) interprets the environment through vision and language instructions. The subsequent diffusion transformer module (System 1) generates fluid motor actions in real time. Both modules are tightly coupled and jointly trained end-to-end. We train GR00T N1 with a heterogeneous mixture of real-robot trajectories, human videos, and synthetically generated datasets. We show that our generalist robot model GR00T N1 outperforms the state-of-the-art imitation learning baselines on standard simulation benchmarks across multiple robot embodiments. Furthermore, we deploy our model on the Fourier GR-1 humanoid robot for language-conditioned bimanual manipulation tasks, achieving strong performance with high data efficiency.


Revolution of Wireless Signal Recognition for 6G: Recent Advances, Challenges and Future Directions

arXiv.org Artificial Intelligence

Wireless signal recognition (WSR) is a crucial technique for intelligent communications and spectrum sharing in the next six-generation (6G) wireless communication networks. It can be utilized to enhance network performance and efficiency, improve quality of service (QoS), and improve network security and reliability. Additionally, WSR can be applied for military applications such as signal interception, signal race, and signal abduction. In the past decades, great efforts have been made for the research of WSR. Earlier works mainly focus on model-based methods, including likelihood-based (LB) and feature-based (FB) methods, which have taken the leading position for many years. With the emergence of artificial intelligence (AI), intelligent methods including machine learning-based (ML-based) and deep learning-based (DL-based) methods have been developed to extract the features of the received signals and perform the classification. In this work, we provide a comprehensive review of WSR from the view of applications, main tasks, recent advances, datasets and evaluation metrics, challenges, and future directions. Specifically, intelligent WSR methods are introduced from the perspective of model, data, learning and implementation. Moreover, we analyze the challenges for WSR from the view of complex, dynamic, and open 6G wireless environments and discuss the future directions for WSR. This survey is expected to provide a comprehensive overview of the state-of-the-art WSR techniques and inspire new research directions for WSR in 6G networks.


Source-free domain adaptation based on label reliability for cross-domain bearing fault diagnosis

arXiv.org Artificial Intelligence

Source-free domain adaptation (SFDA) has been exploited for cross-domain bearing fault diagnosis without access to source data. Current methods select partial target samples with reliable pseudo-labels for model adaptation, which is sub-optimal due to the ignored target samples. We argue that every target sample can contribute to model adaptation, and accordingly propose in this paper a novel SFDA-based approach for bearing fault diagnosis that exploits both reliable and unreliable pseudo-labels. We develop a data-augmentation-based label voting strategy to divide the target samples into reliable and unreliable ones. We propose to explore the underlying relation between feature space and label space by using the reliable pseudo-labels as ground-truth labels, meanwhile, alleviating negative transfer by maximizing the entropy of the unreliable pseudo-labels. The proposed method achieves well-balance between discriminability and diversity by taking advantage of reliable and unreliable pseudo-labels. Extensive experiments are conducted on two bearing fault benchmarks, demonstrating that our approach achieves significant performance improvements against existing SFDA-based bearing fault diagnosis methods. Our code is available at https://github.com/BdLab405/SDALR.


HEATS: A Hierarchical Framework for Efficient Autonomous Target Search with Mobile Manipulators

arXiv.org Artificial Intelligence

Utilizing robots for autonomous target search in complex and unknown environments can greatly improve the efficiency of search and rescue missions. However, existing methods have shown inadequate performance due to hardware platform limitations, inefficient viewpoint selection strategies, and conservative motion planning. In this work, we propose HEATS, which enhances the search capability of mobile manipulators in complex and unknown environments. We design a target viewpoint planner tailored to the strengths of mobile manipulators, ensuring efficient and comprehensive viewpoint planning. Supported by this, a whole-body motion planner integrates global path search with local IPC optimization, enabling the mobile manipulator to safely and agilely visit target viewpoints, significantly improving search performance. We present extensive simulated and real-world tests, in which our method demonstrates reduced search time, higher target search completeness, and lower movement cost compared to classic and state-of-the-art approaches. Our method will be open-sourced for community benefit.


CAD-VAE: Leveraging Correlation-Aware Latents for Comprehensive Fair Disentanglement

arXiv.org Artificial Intelligence

While deep generative models have significantly advanced representation learning, they may inherit or amplify biases and fairness issues by encoding sensitive attributes alongside predictive features. Enforcing strict independence in disentanglement is often unrealistic when target and sensitive factors are naturally correlated. To address this challenge, we propose CAD-VAE (Correlation-Aware Disentangled VAE), which introduces a correlated latent code to capture the shared information between target and sensitive attributes. Given this correlated latent, our method effectively separates overlapping factors without extra domain knowledge by directly minimizing the conditional mutual information between target and sensitive codes. A relevance-driven optimization strategy refines the correlated code by efficiently capturing essential correlated features and eliminating redundancy. Extensive experiments on benchmark datasets demonstrate that CAD-VAE produces fairer representations, realistic counterfactuals, and improved fairness-aware image editing.


RAPID: Efficient Retrieval-Augmented Long Text Generation with Writing Planning and Information Discovery

arXiv.org Artificial Intelligence

Generating knowledge-intensive and comprehensive long texts, such as encyclopedia articles, remains significant challenges for Large Language Models. It requires not only the precise integration of facts but also the maintenance of thematic coherence throughout the article. Existing methods, such as direct generation and multi-agent discussion, often struggle with issues like hallucinations, topic incoherence, and significant latency. To address these challenges, we propose RAPID, an efficient retrieval-augmented long text generation framework. RAPID consists of three main modules: (1) Retrieval-augmented preliminary outline generation to reduce hallucinations, (2) Attribute-constrained search for efficient information discovery, (3) Plan-guided article generation for enhanced coherence. Extensive experiments on our newly compiled benchmark dataset, FreshWiki-2024, demonstrate that RAPID significantly outperforms state-of-the-art methods across a wide range of evaluation metrics (e.g. long-text generation, outline quality, latency, etc). Our work provides a robust and efficient solution to the challenges of automated long-text generation.


FINEREASON: Evaluating and Improving LLMs' Deliberate Reasoning through Reflective Puzzle Solving

arXiv.org Artificial Intelligence

Many challenging reasoning tasks require not just rapid, intuitive responses, but a more deliberate, multi-step approach. Recent progress in large language models (LLMs) highlights an important shift from the "System 1" way of quick reactions to the "System 2" style of reflection-and-correction problem solving. However, current benchmarks heavily rely on the final-answer accuracy, leaving much of a model's intermediate reasoning steps unexamined. This fails to assess the model's ability to reflect and rectify mistakes within the reasoning process. To bridge this gap, we introduce FINEREASON, a logic-puzzle benchmark for fine-grained evaluation of LLMs' reasoning capabilities. Each puzzle can be decomposed into atomic steps, making it ideal for rigorous validation of intermediate correctness. Building on this, we introduce two tasks: state checking, and state transition, for a comprehensive evaluation of how models assess the current situation and plan the next move. To support broader research, we also provide a puzzle training set aimed at enhancing performance on general mathematical tasks. We show that models trained on our state checking and transition data demonstrate gains in math reasoning by up to 5.1% on GSM8K.


LLM-Enhanced Dialogue Management for Full-Duplex Spoken Dialogue Systems

arXiv.org Artificial Intelligence

Achieving full-duplex communication in spoken dialogue systems (SDS) requires real-time coordination between listening, speaking, and thinking. This paper proposes a semantic voice activity detection (VAD) module as a dialogue manager (DM) to efficiently manage turn-taking in full-duplex SDS. Implemented as a lightweight (0.5B) LLM fine-tuned on full-duplex conversation data, the semantic VAD predicts four control tokens to regulate turn-switching and turn-keeping, distinguishing between intentional and unintentional barge-ins while detecting query completion for handling user pauses and hesitations. By processing input speech in short intervals, the semantic VAD enables real-time decision-making, while the core dialogue engine (CDE) is only activated for response generation, reducing computational overhead. This design allows independent DM optimization without retraining the CDE, balancing interaction accuracy and inference efficiency for scalable, next-generation full-duplex SDS.