Zhang, Hanwei
Enhancing robustness of data-driven SHM models: adversarial training with circle loss
Yang, Xiangli, Deng, Xijie, Zhang, Hanwei, Zou, Yang, Yang, Jianxi
Structural health monitoring (SHM) is critical to safeguarding the safety and reliability of aerospace, civil, and mechanical infrastructure. Machine learning-based data-driven approaches have gained popularity in SHM due to advancements in sensors and computational power. However, machine learning models used in SHM are vulnerable to adversarial examples -- even small changes in input can lead to different model outputs. This paper aims to address this problem by discussing adversarial defenses in SHM. In this paper, we propose an adversarial training method for defense, which uses circle loss to optimize the distance between features in training to keep examples away from the decision boundary. Through this simple yet effective constraint, our method demonstrates substantial improvements in model robustness, surpassing existing defense mechanisms.
A Learning Paradigm for Interpretable Gradients
Figueroa, Felipe Torres, Zhang, Hanwei, Sicre, Ronan, Avrithis, Yannis, Ayache, Stephane
Most approaches based on Class Activation Maps (CAM) combine information from fully connected layers and gradient through variants of backpropagation. However, it is well understood that gradients are noisy and alternatives like guided backpropagation have been proposed to obtain better visualization at inference. In this work, we present a novel training approach to improve the quality of gradients for interpretability. In particular, we introduce a regularization loss such that the gradient with respect to the input image obtained by standard backpropagation is similar to the gradient obtained by guided backpropagation. We find that the resulting gradient is qualitatively less noisy and improves quantitatively the interpretability properties of different networks, using several interpretability methods.
Towards Good Practices in Evaluating Transfer Adversarial Attacks
Zhao, Zhengyu, Zhang, Hanwei, Li, Renjue, Sicre, Ronan, Amsaleg, Laurent, Backes, Michael
Transfer adversarial attacks raise critical security concerns in real-world, black-box scenarios. However, the actual progress of this field is difficult to assess due to two common limitations in existing evaluations. First, different methods are often not systematically and fairly evaluated in a one-to-one comparison. Second, only transferability is evaluated but another key attack property, stealthiness, is largely overlooked. In this work, we design good practices to address these limitations, and we present the first comprehensive evaluation of transfer attacks, covering 23 representative attacks against 9 defenses on ImageNet. In particular, we propose to categorize existing attacks into five categories, which enables our systematic category-wise analyses. These analyses lead to new findings that even challenge existing knowledge and also help determine the optimal attack hyperparameters for our attack-wise comprehensive evaluation. We also pay particular attention to stealthiness, by adopting diverse imperceptibility metrics and looking into new, finer-grained characteristics. Overall, our new insights into transferability and stealthiness lead to actionable good practices for future evaluations.
A Stochastic Online Forecast-and-Optimize Framework for Real-Time Energy Dispatch in Virtual Power Plants under Uncertainty
Jiang, Wei, Yi, Zhongkai, Wang, Li, Zhang, Hanwei, Zhang, Jihai, Lin, Fangquan, Yang, Cheng
Aggregating distributed energy resources in power systems significantly increases uncertainties, in particular caused by the fluctuation of renewable energy generation. This issue has driven the necessity of widely exploiting advanced predictive control techniques under uncertainty to ensure long-term economics and decarbonization. In this paper, we propose a real-time uncertainty-aware energy dispatch framework, which is composed of two key elements: (i) A hybrid forecast-and-optimize sequential task, integrating deep learning-based forecasting and stochastic optimization, where these two stages are connected by the uncertainty estimation at multiple temporal resolutions; (ii) An efficient online data augmentation scheme, jointly involving model pre-training and online fine-tuning stages. In this way, the proposed framework is capable to rapidly adapt to the real-time data distribution, as well as to target on uncertainties caused by data drift, model discrepancy and environment perturbations in the control process, and finally to realize an optimal and robust dispatch solution. The proposed framework won the championship in CityLearn Challenge 2022, which provided an influential opportunity to investigate the potential of AI application in the energy domain. In addition, comprehensive experiments are conducted to interpret its effectiveness in the real-life scenario of smart building energy management.