Goto

Collaborating Authors

 Zhang, Hai


Efficient Over-parameterized Matrix Sensing from Noisy Measurements via Alternating Preconditioned Gradient Descent

arXiv.org Machine Learning

We consider the noisy matrix sensing problem in the over-parameterization setting, where the estimated rank $r$ is larger than the true rank $r_\star$. Specifically, our main objective is to recover a matrix $ X_\star \in \mathbb{R}^{n_1 \times n_2} $ with rank $ r_\star $ from noisy measurements using an over-parameterized factorized form $ LR^\top $, where $ L \in \mathbb{R}^{n_1 \times r}, \, R \in \mathbb{R}^{n_2 \times r} $ and $ \min\{n_1, n_2\} \ge r > r_\star $, with the true rank $ r_\star $ being unknown. Recently, preconditioning methods have been proposed to accelerate the convergence of matrix sensing problem compared to vanilla gradient descent, incorporating preconditioning terms $ (L^\top L + \lambda I)^{-1} $ and $ (R^\top R + \lambda I)^{-1} $ into the original gradient. However, these methods require careful tuning of the damping parameter $\lambda$ and are sensitive to initial points and step size. To address these limitations, we propose the alternating preconditioned gradient descent (APGD) algorithm, which alternately updates the two factor matrices, eliminating the need for the damping parameter and enabling faster convergence with larger step sizes. We theoretically prove that APGD achieves near-optimal error convergence at a linear rate, starting from arbitrary random initializations. Through extensive experiments, we validate our theoretical results and demonstrate that APGD outperforms other methods, achieving the fastest convergence rate. Notably, both our theoretical analysis and experimental results illustrate that APGD does not rely on the initialization procedure, making it more practical and versatile.


Focus On What Matters: Separated Models For Visual-Based RL Generalization

arXiv.org Artificial Intelligence

A primary challenge for visual-based Reinforcement Learning (RL) is to generalize effectively across unseen environments. Although previous studies have explored different auxiliary tasks to enhance generalization, few adopt image reconstruction due to concerns about exacerbating overfitting to task-irrelevant features during training. Perceiving the pre-eminence of image reconstruction in representation learning, we propose SMG (Separated Models for Generalization), a novel approach that exploits image reconstruction for generalization. SMG introduces two model branches to extract task-relevant and task-irrelevant representations separately from visual observations via cooperatively reconstruction. Built upon this architecture, we further emphasize the importance of task-relevant features for generalization. Specifically, SMG incorporates two additional consistency losses to guide the agent's focus toward task-relevant areas across different scenarios, thereby achieving free from overfitting. Extensive experiments in DMC demonstrate the SOTA performance of SMG in generalization, particularly excelling in video-background settings. Evaluations on robotic manipulation tasks further confirm the robustness of SMG in real-world applications. Source code is available at https://anonymous.4open.science/r/SMG/.


FlamePINN-1D: Physics-informed neural networks to solve forward and inverse problems of 1D laminar flames

arXiv.org Artificial Intelligence

Given the existence of various forward and inverse problems in combustion studies and applications that necessitate distinct methods for resolution, a framework to solve them in a unified way is critically needed. A promising approach is the integration of machine learning methods with governing equations of combustion systems, which exhibits superior generality and few-shot learning ability compared to purely data-driven methods. In this work, the FlamePINN-1D framework is proposed to solve the forward and inverse problems of 1D laminar flames based on physics-informed neural networks. Three cases with increasing complexity have been tested: Case 1 are freely-propagating premixed (FPP) flames with simplified physical models, while Case 2 and Case 3 are FPP and counterflow premixed (CFP) flames with detailed models, respectively. For forward problems, FlamePINN-1D aims to solve the flame fields and infer the unknown eigenvalues (such as laminar flame speeds) under the constraints of governing equations and boundary conditions. For inverse problems, FlamePINN-1D aims to reconstruct the continuous fields and infer the unknown parameters (such as transport and chemical kinetics parameters) from noisy sparse observations of the flame. Our results strongly validate these capabilities of FlamePINN-1D across various flames and working conditions. Compared to traditional methods, FlamePINN-1D is differentiable and mesh-free, exhibits no discretization errors, and is easier to implement for inverse problems. The inverse problem results also indicate the possibility of optimizing chemical mechanisms from measurements of laboratory 1D flames. Furthermore, some proposed strategies, such as hard constraints and thin-layer normalization, are proven to be essential for the robust learning of FlamePINN-1D. The code for this paper is partially available at https://github.com/CAME-THU/FlamePINN-1D.


CCTNet: A Circular Convolutional Transformer Network for LiDAR-based Place Recognition Handling Movable Objects Occlusion

arXiv.org Artificial Intelligence

Abstract--Place recognition is a fundamental task for robotic application, allowing robots to perform loop closure detection within simultaneous localization and mapping (SLAM), and achieve re-localization on prior maps. Current range imagebased networks use single-column convolution to maintain feature invariance to shifts in image columns caused by LiDAR viewpoint change. However, this raises the issues such as restricted receptive fields and excessive focus on local regions, degrading the performance of networks. To address the aforementioned issues, we propose a lightweight circular convolutional Transformer network denoted as CCTNet, which boosts performance by capturing structural information in point clouds and facilitating cross-dimensional interaction of spatial and channel information. Through extensive experiments on the KITTI and Ford Campus datasets, CCTNet surpasses comparable methods, achieving Recall@1 of 0.924 and 0.965, Results on the self-collected dataset further demonstrate the proposed method's potential for practical Hai Zhang is with the Centre for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, P.R.China (e-mail: Materials and Structures, Harbin Institute of Technology, Harbin 150001, P.R.China (e-mail: juehundt@hit.edu.cn). Rhling et al. [14] proposed In this paper, a circular convolutional Transformer network a statistical-based method called Fast Histogram algorithm, with a regression loss is proposed for place recognition task which generates a one-dimensional histogram as a descriptor in scenarios with movable object occlusion. It treats the range image as Moreover, Scan Context [11] employed the polar coordinate a ring, utilizing multi-column convolution to learn local feature to map the point cloud into a two-dimensional (2D) matrix details, relationships between range image columns, and along radial and angular directions, serving as descriptors for circular structural features of the point clouds. However, crafting manual features usually a Range Transformer module is proposed to dynamically allocate requires domain-specific expertise, and manual descriptors weights to various channels and pixel regions, enabling exhibit limited robustness in handling variations and uncertainties the fusion and interaction of information from both channel in complex scenes [15].


Scrutinize What We Ignore: Reining Task Representation Shift In Context-Based Offline Meta Reinforcement Learning

arXiv.org Artificial Intelligence

Offline meta reinforcement learning (OMRL) has emerged as a promising approach for interaction avoidance and strong generalization performance by leveraging pre-collected data and meta-learning techniques. Previous context-based approaches predominantly rely on the intuition that maximizing the mutual information between the task and the task representation ($I(Z;M)$) can lead to performance improvements. Despite achieving attractive results, the theoretical justification of performance improvement for such intuition has been lacking. Motivated by the return discrepancy scheme in the model-based RL field, we find that maximizing $I(Z;M)$ can be interpreted as consistently raising the lower bound of the expected return for a given policy conditioning on the optimal task representation. However, this optimization process ignores the task representation shift between two consecutive updates, which may lead to performance improvement collapse. To address this problem, we turn to use the framework of performance difference bound to consider the impacts of task representation shift explicitly. We demonstrate that by reining the task representation shift, it is possible to achieve monotonic performance improvements, thereby showcasing the advantage against previous approaches. To make it practical, we design an easy yet highly effective algorithm RETRO (\underline{RE}ining \underline{T}ask \underline{R}epresentation shift in context-based \underline{O}ffline meta reinforcement learning) with only adding one line of code compared to the backbone. Empirical results validate its state-of-the-art (SOTA) asymptotic performance, training stability and training-time consumption on MuJoCo and MetaWorld benchmarks.


A Fourier Approach to the Parameter Estimation Problem for One-dimensional Gaussian Mixture Models

arXiv.org Machine Learning

The purpose of this paper is twofold. First, we propose a novel algorithm for estimating parameters in one-dimensional Gaussian mixture models (GMMs). The algorithm takes advantage of the Hankel structure inherent in the Fourier data obtained from independent and identically distributed (i.i.d) samples of the mixture. For GMMs with a unified variance, a singular value ratio functional using the Fourier data is introduced and used to resolve the variance and component number simultaneously. The consistency of the estimator is derived. Compared to classic algorithms such as the method of moments and the maximum likelihood method, the proposed algorithm does not require prior knowledge of the number of Gaussian components or good initial guesses. Numerical experiments demonstrate its superior performance in estimation accuracy and computational cost. Second, we reveal that there exists a fundamental limit to the problem of estimating the number of Gaussian components or model order in the mixture model if the number of i.i.d samples is finite. For the case of a single variance, we show that the model order can be successfully estimated only if the minimum separation distance between the component means exceeds a certain threshold value and can fail if below. We derive a lower bound for this threshold value, referred to as the computational resolution limit, in terms of the number of i.i.d samples, the variance, and the number of Gaussian components. Numerical experiments confirm this phase transition phenomenon in estimating the model order. Moreover, we demonstrate that our algorithm achieves better scores in likelihood, AIC, and BIC when compared to the EM algorithm.


Towards an Information Theoretic Framework of Context-Based Offline Meta-Reinforcement Learning

arXiv.org Artificial Intelligence

As a marriage between offline RL and meta-RL, the advent of offline meta-reinforcement learning (OMRL) has shown great promise in enabling RL agents to multi-task and quickly adapt while acquiring knowledge safely. Among which, Context-based OMRL (COMRL) as a popular paradigm, aims to learn a universal policy conditioned on effective task representations. In this work, by examining several key milestones in the field of COMRL, we propose to integrate these seemingly independent methodologies into a unified information theoretic framework. Most importantly, we show that the pre-existing COMRL algorithms are essentially optimizing the same mutual information objective between the task variable $\boldsymbol{M}$ and its latent representation $\boldsymbol{Z}$ by implementing various approximate bounds. Based on the theoretical insight and the information bottleneck principle, we arrive at a novel algorithm dubbed UNICORN, which exhibits remarkable generalization across a broad spectrum of RL benchmarks, context shift scenarios, data qualities and deep learning architectures, attaining the new state-of-the-art. We believe that our framework could open up avenues for new optimality bounds and COMRL algorithms.


How to Fine-tune the Model: Unified Model Shift and Model Bias Policy Optimization

arXiv.org Artificial Intelligence

Designing and deriving effective model-based reinforcement learning (MBRL) algorithms with a performance improvement guarantee is challenging, mainly attributed to the high coupling between model learning and policy optimization. Many prior methods that rely on return discrepancy to guide model learning ignore the impacts of model shift, which can lead to performance deterioration due to excessive model updates. Other methods use performance difference bound to explicitly consider model shift. However, these methods rely on a fixed threshold to constrain model shift, resulting in a heavy dependence on the threshold and a lack of adaptability during the training process. In this paper, we theoretically derive an optimization objective that can unify model shift and model bias and then formulate a fine-tuning process. This process adaptively adjusts the model updates to get a performance improvement guarantee while avoiding model overfitting. Based on these, we develop a straightforward algorithm USB-PO (Unified model Shift and model Bias Policy Optimization). Empirical results show that USB-PO achieves state-of-the-art performance on several challenging benchmark tasks.


Safe Reinforcement Learning with Dead-Ends Avoidance and Recovery

arXiv.org Artificial Intelligence

Safety is one of the main challenges in applying reinforcement learning to realistic environmental tasks. To ensure safety during and after training process, existing methods tend to adopt overly conservative policy to avoid unsafe situations. However, overly conservative policy severely hinders the exploration, and makes the algorithms substantially less rewarding. In this paper, we propose a method to construct a boundary that discriminates safe and unsafe states. The boundary we construct is equivalent to distinguishing dead-end states, indicating the maximum extent to which safe exploration is guaranteed, and thus has minimum limitation on exploration. Similar to Recovery Reinforcement Learning, we utilize a decoupled RL framework to learn two policies, (1) a task policy that only considers improving the task performance, and (2) a recovery policy that maximizes safety. The recovery policy and a corresponding safety critic are pretrained on an offline dataset, in which the safety critic evaluates upper bound of safety in each state as awareness of environmental safety for the agent. During online training, a behavior correction mechanism is adopted, ensuring the agent to interact with the environment using safe actions only. Finally, experiments of continuous control tasks demonstrate that our approach has better task performance with less safety violations than state-of-the-art algorithms.


Differentially Private SGD with Non-Smooth Loss

arXiv.org Machine Learning

In this paper, we are concerned with differentially private SGD algorithms in the setting of stochastic convex optimization (SCO). Most of existing work requires the loss to be Lipschitz continuous and strongly smooth, and the model parameter to be uniformly bounded. However, these assumptions are restrictive as many popular losses violate these conditions including the hinge loss for SVM, the absolute loss in robust regression, and even the least square loss in an unbounded domain. We significantly relax these restrictive assumptions and establish privacy and generalization (utility) guarantees for private SGD algorithms using output and gradient perturbations associated with non-smooth convex losses. Specifically, the loss function is relaxed to have $\alpha$-H\"{o}lder continuous gradient (referred to as $\alpha$-H\"{o}lder smoothness) which instantiates the Lipschitz continuity ($\alpha=0$) and strong smoothness ($\alpha=1$). We prove that noisy SGD with $\alpha$-H\"older smooth losses using gradient perturbation can guarantee $(\epsilon,\delta)$-differential privacy (DP) and attain optimal excess population risk $O\Big(\frac{\sqrt{d\log(1/\delta)}}{n\epsilon}+\frac{1}{\sqrt{n}}\Big)$, up to logarithmic terms, with gradient complexity (i.e. the total number of iterations) $T =O( n^{2-\alpha\over 1+\alpha}+ n).$ This shows an important trade-off between $\alpha$-H\"older smoothness of the loss and the computational complexity $T$ for private SGD with statistically optimal performance. In particular, our results indicate that $\alpha$-H\"older smoothness with $\alpha\ge {1/2}$ is sufficient to guarantee $(\epsilon,\delta)$-DP of noisy SGD algorithms while achieving optimal excess risk with linear gradient complexity $T = O(n).$