Zhang, Fred
ForecastBench: A Dynamic Benchmark of AI Forecasting Capabilities
Karger, Ezra, Bastani, Houtan, Yueh-Han, Chen, Jacobs, Zachary, Halawi, Danny, Zhang, Fred, Tetlock, Philip E.
Forecasts of future events are essential inputs into informed decision-making. Machine learning (ML) systems have the potential to deliver forecasts at scale, but there is no framework for evaluating the accuracy of ML systems on a standardized set of forecasting questions. To address this gap, we introduce ForecastBench: a dynamic benchmark that evaluates the accuracy of ML systems on an automatically generated and regularly updated set of 1,000 forecasting questions. To avoid any possibility of data leakage, ForecastBench is comprised solely of questions about future events that have no known answer at the time of submission. We quantify the capabilities of current ML systems by collecting forecasts from expert (human) forecasters, the general public, and LLMs on a random subset of questions from the benchmark ($N=200$). While LLMs have achieved super-human performance on many benchmarks, they perform less well here: expert forecasters outperform the top-performing LLM (p-value $<0.01$). We display system and human scores in a public leaderboard at www.forecastbench.org.
Approaching Human-Level Forecasting with Language Models
Halawi, Danny, Zhang, Fred, Yueh-Han, Chen, Steinhardt, Jacob
Forecasting future events is important for policy and decision making. In this work, we study whether language models (LMs) can forecast at the level of competitive human forecasters. Towards this goal, we develop a retrieval-augmented LM system designed to automatically search for relevant information, generate forecasts, and aggregate predictions. To facilitate our study, we collect a large dataset of questions from competitive forecasting platforms. Under a test set published after the knowledge cut-offs of our LMs, we evaluate the end-to-end performance of our system against the aggregates of human forecasts. On average, the system nears the crowd aggregate of competitive forecasters, and in some settings surpasses it. Our work suggests that using LMs to forecast the future could provide accurate predictions at scale and help to inform institutional decision making.
Adaptive Regret for Bandits Made Possible: Two Queries Suffice
Lu, Zhou, Zhang, Qiuyi, Chen, Xinyi, Zhang, Fred, Woodruff, David, Hazan, Elad
Fast changing states or volatile environments pose a significant challenge to online optimization, which needs to perform rapid adaptation under limited observation. In this paper, we give query and regret optimal bandit algorithms under the strict notion of strongly adaptive regret, which measures the maximum regret over any contiguous interval $I$. Due to its worst-case nature, there is an almost-linear $\Omega(|I|^{1-\epsilon})$ regret lower bound, when only one query per round is allowed [Daniely el al, ICML 2015]. Surprisingly, with just two queries per round, we give Strongly Adaptive Bandit Learner (StABL) that achieves $\tilde{O}(\sqrt{n|I|})$ adaptive regret for multi-armed bandits with $n$ arms. The bound is tight and cannot be improved in general. Our algorithm leverages a multiplicative update scheme of varying stepsizes and a carefully chosen observation distribution to control the variance. Furthermore, we extend our results and provide optimal algorithms in the bandit convex optimization setting. Finally, we empirically demonstrate the superior performance of our algorithms under volatile environments and for downstream tasks, such as algorithm selection for hyperparameter optimization.
Towards Best Practices of Activation Patching in Language Models: Metrics and Methods
Zhang, Fred, Nanda, Neel
Mechanistic interpretability seeks to understand the internal mechanisms of machine learning models, where localization -- identifying the important model components -- is a key step. Activation patching, also known as causal tracing or interchange intervention, is a standard technique for this task (Vig et al., 2020), but the literature contains many variants with little consensus on the choice of hyperparameters or methodology. In this work, we systematically examine the impact of methodological details in activation patching, including evaluation metrics and corruption methods. In several settings of localization and circuit discovery in language models, we find that varying these hyperparameters could lead to disparate interpretability results. Backed by empirical observations, we give conceptual arguments for why certain metrics or methods may be preferred. Finally, we provide recommendations for the best practices of activation patching going forwards.
Privately Estimating a Gaussian: Efficient, Robust and Optimal
Alabi, Daniel, Kothari, Pravesh K., Tankala, Pranay, Venkat, Prayaag, Zhang, Fred
In this work, we give efficient algorithms for privately estimating a Gaussian distribution in both pure and approximate differential privacy (DP) models with optimal dependence on the dimension in the sample complexity. In the pure DP setting, we give an efficient algorithm that estimates an unknown $d$-dimensional Gaussian distribution up to an arbitrary tiny total variation error using $\widetilde{O}(d^2 \log \kappa)$ samples while tolerating a constant fraction of adversarial outliers. Here, $\kappa$ is the condition number of the target covariance matrix. The sample bound matches best non-private estimators in the dependence on the dimension (up to a polylogarithmic factor). We prove a new lower bound on differentially private covariance estimation to show that the dependence on the condition number $\kappa$ in the above sample bound is also tight. Prior to our work, only identifiability results (yielding inefficient super-polynomial time algorithms) were known for the problem. In the approximate DP setting, we give an efficient algorithm to estimate an unknown Gaussian distribution up to an arbitrarily tiny total variation error using $\widetilde{O}(d^2)$ samples while tolerating a constant fraction of adversarial outliers. Prior to our work, all efficient approximate DP algorithms incurred a super-quadratic sample cost or were not outlier-robust. For the special case of mean estimation, our algorithm achieves the optimal sample complexity of $\widetilde O(d)$, improving on a $\widetilde O(d^{1.5})$ bound from prior work. Our pure DP algorithm relies on a recursive private preconditioning subroutine that utilizes the recent work on private mean estimation [Hopkins et al., 2022]. Our approximate DP algorithms are based on a substantial upgrade of the method of stabilizing convex relaxations introduced in [Kothari et al., 2022].
Streaming Algorithms for Learning with Experts: Deterministic Versus Robust
Woodruff, David P., Zhang, Fred, Zhou, Samson
In the online learning with experts problem, an algorithm must make a prediction about an outcome on each of $T$ days (or times), given a set of $n$ experts who make predictions on each day (or time). The algorithm is given feedback on the outcomes of each day, including the cost of its prediction and the cost of the expert predictions, and the goal is to make a prediction with the minimum cost, specifically compared to the best expert in the set. Recent work by Srinivas, Woodruff, Xu, and Zhou (STOC 2022) introduced the study of the online learning with experts problem under memory constraints. However, often the predictions made by experts or algorithms at some time influence future outcomes, so that the input is adaptively chosen. Whereas deterministic algorithms would be robust to adaptive inputs, existing algorithms all crucially use randomization to sample a small number of experts. In this paper, we study deterministic and robust algorithms for the experts problem. We first show a space lower bound of $\widetilde{\Omega}\left(\frac{nM}{RT}\right)$ for any deterministic algorithm that achieves regret $R$ when the best expert makes $M$ mistakes. Our result shows that the natural deterministic algorithm, which iterates through pools of experts until each expert in the pool has erred, is optimal up to polylogarithmic factors. On the positive side, we give a randomized algorithm that is robust to adaptive inputs that uses $\widetilde{O}\left(\frac{n}{R\sqrt{T}}\right)$ space for $M=O\left(\frac{R^2 T}{\log^2 n}\right)$, thereby showing a smooth space-regret trade-off.
Robust and Heavy-Tailed Mean Estimation Made Simple, via Regret Minimization
Hopkins, Samuel B., Li, Jerry, Zhang, Fred
We study the problem of estimating the mean of a distribution in high dimensions when either the samples are adversarially corrupted or the distribution is heavy-tailed. Recent developments in robust statistics have established efficient and (near) optimal procedures for both settings. However, the algorithms developed on each side tend to be sophisticated and do not directly transfer to the other, with many of them having ad-hoc or complicated analyses. In this paper, we provide a meta-problem and a duality theorem that lead to a new unified view on robust and heavy-tailed mean estimation in high dimensions. We show that the meta-problem can be solved either by a variant of the Filter algorithm from the recent literature on robust estimation or by the quantum entropy scoring scheme (QUE), due to Dong, Hopkins and Li (NeurIPS '19). By leveraging our duality theorem, these results translate into simple and efficient algorithms for both robust and heavy-tailed settings. Furthermore, the QUE-based procedure has run-time that matches the fastest known algorithms on both fronts. Our analysis of Filter is through the classic regret bound of the multiplicative weights update method. This connection allows us to avoid the technical complications in previous works and improve upon the run-time analysis of a gradient-descent-based algorithm for robust mean estimation by Cheng, Diakonikolas, Ge and Soltanolkotabi (ICML '20).
A Fast Spectral Algorithm for Mean Estimation with Sub-Gaussian Rates
Lei, Zhixian, Luh, Kyle, Venkat, Prayaag, Zhang, Fred
We study the algorithmic problem of estimating the mean of heavy-tailed random vector in $\mathbb{R}^d$, given $n$ i.i.d. samples. The goal is to design an efficient estimator that attains the optimal sub-gaussian error bound, only assuming that the random vector has bounded mean and covariance. Polynomial-time solutions to this problem are known but have high runtime due to their use of semi-definite programming (SDP). Conceptually, it remains open whether convex relaxation is truly necessary for this problem. In this work, we show that it is possible to go beyond SDP and achieve better computational efficiency. In particular, we provide a spectral algorithm that achieves the optimal statistical performance and runs in time $\widetilde O\left(n^2 d \right)$, improving upon the previous fastest runtime $\widetilde O\left(n^{3.5}+ n^2d\right)$ by Cherapanamjeri el al. (COLT '19) and matching the concurrent work by Depersin and Lecu\'e. Our algorithm is spectral in that it only requires (approximate) eigenvector computations, which can be implemented very efficiently by, for example, power iteration or the Lanczos method. At the core of our algorithm is a novel connection between the furthest hyperplane problem introduced by Karnin et al. (COLT '12) and a structural lemma on heavy-tailed distributions by Lugosi and Mendelson (Ann. Stat. '19). This allows us to iteratively reduce the estimation error at a geometric rate using only the information derived from the top singular vector of the data matrix, leading to a significantly faster running time.
SGD on Neural Networks Learns Functions of Increasing Complexity
Nakkiran, Preetum, Kaplun, Gal, Kalimeris, Dimitris, Yang, Tristan, Edelman, Benjamin L., Zhang, Fred, Barak, Boaz
We perform an experimental study of the dynamics of Stochastic Gradient Descent (SGD) in learning deep neural networks for several real and synthetic classification tasks. We show that in the initial epochs, almost all of the performance improvement of the classifier obtained by SGD can be explained by a linear classifier. More generally, we give evidence for the hypothesis that, as iterations progress, SGD learns functions of increasing complexity. This hypothesis can be helpful in explaining why SGD-learned classifiers tend to generalize well even in the over-parameterized regime. We also show that the linear classifier learned in the initial stages is "retained" throughout the execution even if training is continued to the point of zero training error, and complement this with a theoretical result in a simplified model. Key to our work is a new measure of how well one classifier explains the performance of another, based on conditional mutual information.