Goto

Collaborating Authors

 Zhang, Di


Resource Constrained Model Compression via Minimax Optimization for Spiking Neural Networks

arXiv.org Artificial Intelligence

Brain-inspired Spiking Neural Networks (SNNs) have the characteristics of event-driven and high energy-efficient, which are different from traditional Artificial Neural Networks (ANNs) when deployed on edge devices such as neuromorphic chips. Most previous work focuses on SNNs training strategies to improve model performance and brings larger and deeper network architectures. It is difficult to deploy these complex networks on resource-limited edge devices directly. To meet such demand, people compress SNNs very cautiously to balance the performance and the computation efficiency. Existing compression methods either iteratively pruned SNNs using weights norm magnitude or formulated the problem as a sparse learning optimization. We propose an improved end-to-end Minimax optimization method for this sparse learning problem to better balance the model performance and the computation efficiency. We also demonstrate that jointly applying compression and finetuning on SNNs is better than sequentially, especially for extreme compression ratios. The compressed SNN models achieved state-of-the-art (SOTA) performance on various benchmark datasets and architectures. Our code is available at https://github.com/chenjallen/Resource-Constrained-Compression-on-SNN.


Safe Reinforcement Learning with Dead-Ends Avoidance and Recovery

arXiv.org Artificial Intelligence

Safety is one of the main challenges in applying reinforcement learning to realistic environmental tasks. To ensure safety during and after training process, existing methods tend to adopt overly conservative policy to avoid unsafe situations. However, overly conservative policy severely hinders the exploration, and makes the algorithms substantially less rewarding. In this paper, we propose a method to construct a boundary that discriminates safe and unsafe states. The boundary we construct is equivalent to distinguishing dead-end states, indicating the maximum extent to which safe exploration is guaranteed, and thus has minimum limitation on exploration. Similar to Recovery Reinforcement Learning, we utilize a decoupled RL framework to learn two policies, (1) a task policy that only considers improving the task performance, and (2) a recovery policy that maximizes safety. The recovery policy and a corresponding safety critic are pretrained on an offline dataset, in which the safety critic evaluates upper bound of safety in each state as awareness of environmental safety for the agent. During online training, a behavior correction mechanism is adopted, ensuring the agent to interact with the environment using safe actions only. Finally, experiments of continuous control tasks demonstrate that our approach has better task performance with less safety violations than state-of-the-art algorithms.


ClusterLog: Clustering Logs for Effective Log-based Anomaly Detection

arXiv.org Artificial Intelligence

With the increasing prevalence of scalable file systems in the context of High Performance Computing (HPC), the importance of accurate anomaly detection on runtime logs is increasing. But as it currently stands, many state-of-the-art methods for log-based anomaly detection, such as DeepLog, have encountered numerous challenges when applied to logs from many parallel file systems (PFSes), often due to their irregularity and ambiguity in time-based log sequences. To circumvent these problems, this study proposes ClusterLog, a log pre-processing method that clusters the temporal sequence of log keys based on their semantic similarity. By grouping semantically and sentimentally similar logs, this approach aims to represent log sequences with the smallest amount of unique log keys, intending to improve the ability of a downstream sequence-based model to effectively learn the log patterns. The preliminary results of ClusterLog indicate not only its effectiveness in reducing the granularity of log sequences without the loss of important sequence information but also its generalizability to different file systems' logs.


RLScheduler: Learn to Schedule HPC Batch Jobs Using Deep Reinforcement Learning

arXiv.org Artificial Intelligence

We present RLScheduler, a deep reinforcement learning based job scheduler for scheduling independent batch jobs in high-performance computing (HPC) environment. From knowing nothing about scheduling at beginning, RLScheduler is able to autonomously learn how to effectively schedule HPC batch jobs, targeting a given optimization goal. This is achieved by deep reinforcement learning with the help of specially designed neural network structures and various optimizations to stabilize and accelerate the learning. Our results show that RLScheduler can outperform existing heuristic scheduling algorithms, including a manually fine-tuned machine learning-based scheduler on the same workload. More importantly, we show that RLScheduler does not blindly over-fit the given workload to achieve such optimization, instead, it learns general rules for scheduling batch jobs which can be further applied to different workloads and systems to achieve similarly optimized performance. We also demonstrate that RLScheduler is capable of adjusting itself along with changing goals and workloads, making it an attractive solution for the future autonomous HPC management.


Projecting "better than randomly": How to reduce the dimensionality of very large datasets in a way that outperforms random projections

arXiv.org Machine Learning

For very large datasets, random projections (RP) have become the tool of choice for dimensionality reduction. This is due to the computational complexity of principal component analysis. However, the recent development of randomized principal component analysis (RPCA) has opened up the possibility of obtaining approximate principal components on very large datasets. In this paper, we compare the performance of RPCA and RP in dimensionality reduction for supervised learning. In Experiment 1, study a malware classification task on a dataset with over 10 million samples, almost 100,000 features, and over 25 billion non-zero values, with the goal of reducing the dimensionality to a compressed representation of 5,000 features. In order to apply RPCA to this dataset, we develop a new algorithm called large sample RPCA (LS-RPCA), which extends the RPCA algorithm to work on datasets with arbitrarily many samples. We find that classification performance is much higher when using LS-RPCA for dimensionality reduction than when using random projections. In particular, across a range of target dimensionalities, we find that using LS-RPCA reduces classification error by between 37% and 54%. Experiment 2 generalizes the phenomenon to multiple datasets, feature representations, and classifiers. These findings have implications for a large number of research projects in which random projections were used as a preprocessing step for dimensionality reduction. As long as accuracy is at a premium and the target dimensionality is sufficiently less than the numeric rank of the dataset, randomized PCA may be a superior choice. Moreover, if the dataset has a large number of samples, then LS-RPCA will provide a method for obtaining the approximate principal components.


Gear Training: A new way to implement high-performance model-parallel training

arXiv.org Machine Learning

The training of Deep Neural Networks usually needs tremendous computing resources. Therefore many deep models are trained in large cluster instead of single machine or GPU. Though major researchs at present try to run whole model on all machines by using asynchronous asynchronous stochastic gradient descent (ASGD), we present a new approach to train deep model parallely -- split the model and then seperately train different parts of it in different speed.