Goto

Collaborating Authors

 Zhang, Dalin


Beyond Fixed Variables: Expanding-variate Time Series Forecasting via Flat Scheme and Spatio-temporal Focal Learning

arXiv.org Artificial Intelligence

Multivariate Time Series Forecasting (MTSF) has long been a key research focus. Traditionally, these studies assume a fixed number of variables, but in real-world applications, Cyber-Physical Systems often expand as new sensors are deployed, increasing variables in MTSF. In light of this, we introduce a novel task, Expanding-variate Time Series Forecasting (EVTSF). This task presents unique challenges, specifically (1) handling inconsistent data shapes caused by adding new variables, and (2) addressing imbalanced spatio-temporal learning, where expanding variables have limited observed data due to the necessity for timely operation. To address these challenges, we propose STEV, a flexible spatio-temporal forecasting framework. STEV includes a new Flat Scheme to tackle the inconsistent data shape issue, which extends the graph-based spatio-temporal modeling architecture into 1D space by flattening the 2D samples along the variable dimension, making the model variable-scale-agnostic while still preserving dynamic spatial correlations through a holistic graph. We introduce a novel Spatio-temporal Focal Learning strategy that incorporates a negative filter to resolve potential conflicts between contrastive learning and graph representation, and a focal contrastive loss as its core to guide the framework to focus on optimizing the expanding variables. We benchmark EVTSF performance using three real-world datasets and compare it against three potential solutions employing SOTA MTSF models tailored for EVSTF. Experimental results show that STEV significantly outperforms its competitors, particularly on expanding variables. Notably, STEV, with only 5% of observations from the expanding period, is on par with SOTA MTSF models trained with complete observations. Further exploration of various expanding strategies underscores the generalizability of STEV in real-world applications.


Not All Data are Good Labels: On the Self-supervised Labeling for Time Series Forecasting

arXiv.org Artificial Intelligence

Time Series Forecasting (TSF) is a crucial task in various domains, yet existing TSF models rely heavily on high-quality data and insufficiently exploit all available data. This paper explores a novel self-supervised approach to re-label time series datasets by inherently constructing candidate datasets. During the optimization of a simple reconstruction network, intermediates are used as pseudo labels in a self-supervised paradigm, improving generalization for any predictor. We introduce the Self-Correction with Adaptive Mask (SCAM), which discards overfitted components and selectively replaces them with pseudo labels generated from reconstructions. Additionally, we incorporate Spectral Norm Regularization (SNR) to further suppress overfitting from a loss landscape perspective. Our experiments on eleven real-world datasets demonstrate that SCAM consistently improves the performance of various backbone models. This work offers a new perspective on constructing datasets and enhancing the generalization of TSF models through self-supervised learning.


DarkFarseer: Inductive Spatio-temporal Kriging via Hidden Style Enhancement and Sparsity-Noise Mitigation

arXiv.org Artificial Intelligence

With the rapid growth of the Internet of Things and Cyber-Physical Systems, widespread sensor deployment has become essential. However, the high costs of building sensor networks limit their scale and coverage, making fine-grained deployment challenging. Inductive Spatio-Temporal Kriging (ISK) addresses this issue by introducing virtual sensors. Based on graph neural networks (GNNs) extracting the relationships between physical and virtual sensors, ISK can infer the measurements of virtual sensors from physical sensors. However, current ISK methods rely on conventional message-passing mechanisms and network architectures, without effectively extracting spatio-temporal features of physical sensors and focusing on representing virtual sensors. Additionally, existing graph construction methods face issues of sparse and noisy connections, destroying ISK performance. To address these issues, we propose DarkFarseer, a novel ISK framework with three key components. First, we propose the Neighbor Hidden Style Enhancement module with a style transfer strategy to enhance the representation of virtual nodes in a temporal-then-spatial manner to better extract the spatial relationships between physical and virtual nodes. Second, we propose Virtual-Component Contrastive Learning, which aims to enrich the node representation by establishing the association between the patterns of virtual nodes and the regional patterns within graph components. Lastly, we design a Similarity-Based Graph Denoising Strategy, which reduces the connectivity strength of noisy connections around virtual nodes and their neighbors based on their temporal information and regional spatial patterns. Extensive experiments demonstrate that DarkFarseer significantly outperforms existing ISK methods.


LibEER: A Comprehensive Benchmark and Algorithm Library for EEG-based Emotion Recognition

arXiv.org Artificial Intelligence

EEG-based emotion recognition (EER) has gained significant attention due to its potential for understanding and analyzing human emotions. While recent advancements in deep learning techniques have substantially improved EER, the field lacks a convincing benchmark and comprehensive open-source libraries. This absence complicates fair comparisons between models and creates reproducibility challenges for practitioners, which collectively hinder progress. To address these issues, we introduce LibEER, a comprehensive benchmark and algorithm library designed to facilitate fair comparisons in EER. LibEER carefully selects popular and powerful baselines, harmonizes key implementation details across methods, and provides a standardized codebase in PyTorch. By offering a consistent evaluation framework with standardized experimental settings, LibEER enables unbiased assessments of over ten representative deep learning models for EER across the four most widely used datasets. Additionally, we conduct a thorough, reproducible comparison of model performance and efficiency, providing valuable insights to guide researchers in the selection and design of EER models. Moreover, we make observations and in-depth analysis on the experiment results and identify current challenges in this community. We hope that our work will not only lower entry barriers for newcomers to EEG-based emotion recognition but also contribute to the standardization of research in this domain, fostering steady development. The library and source code are publicly available at https://github.com/XJTU-EEG/LibEER.


Fully Automated Correlated Time Series Forecasting in Minutes

arXiv.org Machine Learning

Societal and industrial infrastructures and systems increasingly leverage sensors that emit correlated time series. Forecasting of future values of such time series based on recorded historical values has important benefits. Automatically designed models achieve higher accuracy than manually designed models. Given a forecasting task, which includes a dataset and a forecasting horizon, automated design methods automatically search for an optimal forecasting model for the task in a manually designed search space, and then train the identified model using the dataset to enable the forecasting. Existing automated methods face three challenges. First, the search space is constructed by human experts, rending the methods only semi-automated and yielding search spaces prone to subjective biases. Second, it is time consuming to search for an optimal model. Third, training the identified model for a new task is also costly. These challenges limit the practicability of automated methods in real-world settings. To contend with the challenges, we propose a fully automated and highly efficient correlated time series forecasting framework where the search and training can be done in minutes. The framework includes a data-driven, iterative strategy to automatically prune a large search space to obtain a high-quality search space for a new forecasting task. It includes a zero-shot search strategy to efficiently identify the optimal model in the customized search space. And it includes a fast parameter adaptation strategy to accelerate the training of the identified model. Experiments on seven benchmark datasets offer evidence that the framework is capable of state-of-the-art accuracy and is much more efficient than existing methods.


Conditional Lagrangian Wasserstein Flow for Time Series Imputation

arXiv.org Machine Learning

Time series imputation is important for numerous real-world applications. To overcome the limitations of diffusion model-based imputation methods, e.g., slow convergence in inference, we propose a novel method for time series imputation in this work, called Conditional Lagrangian Wasserstein Flow. The proposed method leverages the (conditional) optimal transport theory to learn the probability flow in a simulation-free manner, in which the initial noise, missing data, and observations are treated as the source distribution, target distribution, and conditional information, respectively. According to the principle of least action in Lagrangian mechanics, we learn the velocity by minimizing the corresponding kinetic energy. Moreover, to incorporate more prior information into the model, we parameterize the derivative of a task-specific potential function via a variational autoencoder, and combine it with the base estimator to formulate a Rao-Blackwellized sampler. The propose model allows us to take less intermediate steps to produce high-quality samples for inference compared to existing diffusion methods. Finally, the experimental results on the real-word datasets show that the proposed method achieves competitive performance on time series imputation compared to the state-of-the-art methods.


E2USD: Efficient-yet-effective Unsupervised State Detection for Multivariate Time Series

arXiv.org Artificial Intelligence

Cyber-physical system sensors emit multivariate time series (MTS) that monitor physical system processes. Such time series generally capture unknown numbers of states, each with a different duration, that correspond to specific conditions, e.g., "walking" or "running" in human-activity monitoring. Unsupervised identification of such states facilitates storage and processing in subsequent data analyses, as well as enhances result interpretability. Existing state-detection proposals face three challenges. First, they introduce substantial computational overhead, rendering them impractical in resourceconstrained or streaming settings. Second, although state-of-the-art (SOTA) proposals employ contrastive learning for representation, insufficient attention to false negatives hampers model convergence and accuracy. Third, SOTA proposals predominantly only emphasize offline non-streaming deployment, we highlight an urgent need to optimize online streaming scenarios. We propose E2Usd that enables efficient-yet-accurate unsupervised MTS state detection. E2Usd exploits a Fast Fourier Transform-based Time Series Compressor (fftCompress) and a Decomposed Dual-view Embedding Module (ddEM) that together encode input MTSs at low computational overhead. Additionally, we propose a False Negative Cancellation Contrastive Learning method (fnccLearning) to counteract the effects of false negatives and to achieve more cluster-friendly embedding spaces. To reduce computational overhead further in streaming settings, we introduce Adaptive Threshold Detection (adaTD). Comprehensive experiments with six baselines and six datasets offer evidence that E2Usd is capable of SOTA accuracy at significantly reduced computational overhead.


Disentangling Imperfect: A Wavelet-Infused Multilevel Heterogeneous Network for Human Activity Recognition in Flawed Wearable Sensor Data

arXiv.org Artificial Intelligence

The popularity and diffusion of wearable devices provides new opportunities for sensor-based human activity recognition that leverages deep learning-based algorithms. Although impressive advances have been made, two major challenges remain. First, sensor data is often incomplete or noisy due to sensor placement and other issues as well as data transmission failure, calling for imputation of missing values, which also introduces noise. Second, human activity has multi-scale characteristics. Thus, different groups of people and even the same person may behave differently under different circumstances. To address these challenges, we propose a multilevel heterogeneous neural network, called MHNN, for sensor data analysis. We utilize multilevel discrete wavelet decomposition to extract multi-resolution features from sensor data. This enables distinguishing signals with different frequencies, thereby suppressing noise. As the components resulting from the decomposition are heterogeneous, we equip the proposed model with heterogeneous feature extractors that enable the learning of multi-scale features. Due to the complementarity of these features, we also include a cross aggregation module for enhancing their interactions. An experimental study using seven publicly available datasets offers evidence that MHNN can outperform other cutting-edge models and offers evidence of robustness to missing values and noise. An ablation study confirms the importance of each module.


TBDetector:Transformer-Based Detector for Advanced Persistent Threats with Provenance Graph

arXiv.org Artificial Intelligence

APT detection is difficult to detect due to the long-term latency, covert and slow multistage attack patterns of Advanced Persistent Threat (APT). To tackle these issues, we propose TBDetector, a transformer-based advanced persistent threat detection method for APT attack detection. Considering that provenance graphs provide rich historical information and have the powerful attacks historic correlation ability to identify anomalous activities, TBDetector employs provenance analysis for APT detection, which summarizes long-running system execution with space efficiency and utilizes transformer with self-attention based encoder-decoder to extract long-term contextual features of system states to detect slow-acting attacks. Furthermore, we further introduce anomaly scores to investigate the anomaly of different system states, where each state is calculated with an anomaly score corresponding to its similarity score and isolation score. To evaluate the effectiveness of the proposed method, we have conducted experiments on five public datasets, i.e., streamspot, cadets, shellshock, clearscope, and wget_baseline. Experimental results and comparisons with state-of-the-art methods have exhibited better performance of our proposed method.


LightCTS: A Lightweight Framework for Correlated Time Series Forecasting

arXiv.org Artificial Intelligence

Correlated time series (CTS) forecasting plays an essential role in many practical applications, such as traffic management and server load control. Many deep learning models have been proposed to improve the accuracy of CTS forecasting. However, while models have become increasingly complex and computationally intensive, they struggle to improve accuracy. Pursuing a different direction, this study aims instead to enable much more efficient, lightweight models that preserve accuracy while being able to be deployed on resource-constrained devices. To achieve this goal, we characterize popular CTS forecasting models and yield two observations that indicate directions for lightweight CTS forecasting. On this basis, we propose the LightCTS framework that adopts plain stacking of temporal and spatial operators instead of alternate stacking that is much more computationally expensive. Moreover, LightCTS features light temporal and spatial operator modules, called L-TCN and GL-Former, that offer improved computational efficiency without compromising their feature extraction capabilities. LightCTS also encompasses a last-shot compression scheme to reduce redundant temporal features and speed up subsequent computations. Experiments with single-step and multi-step forecasting benchmark datasets show that LightCTS is capable of nearly state-of-the-art accuracy at much reduced computational and storage overheads.