Goto

Collaborating Authors

 Zhang, Chuheng


AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence

arXiv.org Artificial Intelligence

Current approaches for training Process Reward Models (PRMs) often involve breaking down responses into multiple reasoning steps using rule-based techniques, such as using predefined placeholder tokens or setting the reasoning step's length into a fixed size. These approaches overlook the fact that specific words do not typically mark true decision points in a text. To address this, we propose AdaptiveStep, a method that divides reasoning steps based on the model's confidence in predicting the next word. This division method provides more decision-making information at each step, enhancing downstream tasks, such as reward model learning. Moreover, our method does not require manual annotation. We demonstrate its effectiveness through experiments with AdaptiveStep-trained PRMs in mathematical reasoning and code generation tasks. Experimental results indicate that the outcome PRM achieves state-of-the-art Best-of-N performance, surpassing greedy search strategy with token-level value-guided decoding, while also reducing construction costs by over 30% compared to existing open-source PRMs. In addition, we provide a thorough analysis and case study on the PRM's performance, transferability, and generalization capabilities.


IGOR: Image-GOal Representations are the Atomic Control Units for Foundation Models in Embodied AI

arXiv.org Artificial Intelligence

We introduce Image-GOal Representations (IGOR), aiming to learn a unified, semantically consistent action space across human and various robots. Through this unified latent action space, IGOR enables knowledge transfer among large-scale robot and human activity data. We achieve this by compressing visual changes between an initial image and its goal state into latent actions. IGOR allows us to generate latent action labels for internet-scale video data. This unified latent action space enables the training of foundation policy and world models across a wide variety of tasks performed by both robots and humans. We demonstrate that: (1) IGOR learns a semantically consistent action space for both human and robots, characterizing various possible motions of objects representing the physical interaction knowledge; (2) IGOR can "migrate" the movements of the object in the one video to other videos, even across human and robots, by jointly using the latent action model and world model; (3) IGOR can learn to align latent actions with natural language through the foundation policy model, and integrate latent actions with a low-level policy model to achieve effective robot control. We believe IGOR opens new possibilities for human-to-robot knowledge transfer and control.


Empowering Large Language Models on Robotic Manipulation with Affordance Prompting

arXiv.org Artificial Intelligence

While large language models (LLMs) are successful in completing various language processing tasks, they easily fail to interact with the physical world by generating control sequences properly. We find that the main reason is that LLMs are not grounded in the physical world. Existing LLM-based approaches circumvent this problem by relying on additional pre-defined skills or pre-trained sub-policies, making it hard to adapt to new tasks. In contrast, we aim to address this problem and explore the possibility to prompt pre-trained LLMs to accomplish a series of robotic manipulation tasks in a training-free paradigm. Accordingly, we propose a framework called LLM+A(ffordance) where the LLM serves as both the sub-task planner (that generates high-level plans) and the motion controller (that generates low-level control sequences). To ground these plans and control sequences on the physical world, we develop the affordance prompting technique that stimulates the LLM to 1) predict the consequences of generated plans and 2) generate affordance values for relevant objects. Empirically, we evaluate the effectiveness of LLM+A in various language-conditioned robotic manipulation tasks, which show that our approach substantially improves performance by enhancing the feasibility of generated plans and control and can easily generalize to different environments.


ARO: Large Language Model Supervised Robotics Text2Skill Autonomous Learning

arXiv.org Artificial Intelligence

Robotics learning highly relies on human expertise and efforts, such as demonstrations, design of reward functions in reinforcement learning, performance evaluation using human feedback, etc. However, reliance on human assistance can lead to expensive learning costs and make skill learning difficult to scale. In this work, we introduce the Large Language Model Supervised Robotics Text2Skill Autonomous Learning (ARO) framework, which aims to replace human participation in the robot skill learning process with large-scale language models that incorporate reward function design and performance evaluation. We provide evidence that our approach enables fully autonomous robot skill learning, capable of completing partial tasks without human intervention. Furthermore, we also analyze the limitations of this approach in task understanding and optimization stability.


Pre-Trained Large Language Models for Industrial Control

arXiv.org Artificial Intelligence

For industrial control, developing high-performance controllers with few samples and low technical debt is appealing. Foundation models, possessing rich prior knowledge obtained from pre-training with Internet-scale corpus, have the potential to be a good controller with proper prompts. In this paper, we take HVAC (Heating, Ventilation, and Air Conditioning) building control as an example to examine the ability of GPT-4 (one of the first-tier foundation models) as the controller. To control HVAC, we wrap the task as a language game by providing text including a short description for the task, several selected demonstrations, and the current observation to GPT-4 on each step and execute the actions responded by GPT-4. We conduct series of experiments to answer the following questions: 1)~How well can GPT-4 control HVAC? 2)~How well can GPT-4 generalize to different scenarios for HVAC control? 3) How different parts of the text context affect the performance? In general, we found GPT-4 achieves the performance comparable to RL methods with few samples and low technical debt, indicating the potential of directly applying foundation models to industrial control tasks.


A Versatile Multi-Agent Reinforcement Learning Benchmark for Inventory Management

arXiv.org Artificial Intelligence

Multi-agent reinforcement learning (MARL) models multiple agents that interact and learn within a shared environment. This paradigm is applicable to various industrial scenarios such as autonomous driving, quantitative trading, and inventory management. However, applying MARL to these real-world scenarios is impeded by many challenges such as scaling up, complex agent interactions, and non-stationary dynamics. To incentivize the research of MARL on these challenges, we develop MABIM (Multi-Agent Benchmark for Inventory Management) which is a multi-echelon, multi-commodity inventory management simulator that can generate versatile tasks with these different challenging properties. Based on MABIM, we evaluate the performance of classic operations research (OR) methods and popular MARL algorithms on these challenging tasks to highlight their weaknesses and potential.


Towards Generalizable Reinforcement Learning for Trade Execution

arXiv.org Artificial Intelligence

Optimized trade execution is to sell (or buy) a given amount of assets in a given time with the lowest possible trading cost. Recently, reinforcement learning (RL) has been applied to optimized trade execution to learn smarter policies from market data. However, we find that many existing RL methods exhibit considerable overfitting which prevents them from real deployment. In this paper, we provide an extensive study on the overfitting problem in optimized trade execution. First, we model the optimized trade execution as offline RL with dynamic context (ORDC), where the context represents market variables that cannot be influenced by the trading policy and are collected in an offline manner. Under this framework, we derive the generalization bound and find that the overfitting issue is caused by large context space and limited context samples in the offline setting. Accordingly, we propose to learn compact representations for context to address the overfitting problem, either by leveraging prior knowledge or in an end-to-end manner. To evaluate our algorithms, we also implement a carefully designed simulator based on historical limit order book (LOB) data to provide a high-fidelity benchmark for different algorithms. Our experiments on the high-fidelity simulator demonstrate that our algorithms can effectively alleviate overfitting and achieve better performance.


RePreM: Representation Pre-training with Masked Model for Reinforcement Learning

arXiv.org Artificial Intelligence

Inspired by the recent success of sequence modeling in RL and the use of masked language model for pre-training, we propose a masked model for pre-training in RL, RePreM (Representation Pre-training with Masked Model), which trains the encoder combined with transformer blocks to predict the masked states or actions in a trajectory. RePreM is simple but effective compared to existing representation pre-training methods in RL. It avoids algorithmic sophistication (such as data augmentation or estimating multiple models) with sequence modeling and generates a representation that captures long-term dynamics well. Empirically, we demonstrate the effectiveness of RePreM in various tasks, including dynamic prediction, transfer learning, and sample-efficient RL with both value-based and actor-critic methods. Moreover, we show that RePreM scales well with dataset size, dataset quality, and the scale of the encoder, which indicates its potential towards big RL models.


Multi-Agent Reinforcement Learning with Shared Resources for Inventory Management

arXiv.org Artificial Intelligence

In this paper, we consider the inventory management (IM) problem where we need to make replenishment decisions for a large number of stock keeping units (SKUs) to balance their supply and demand. In our setting, the constraint on the shared resources (such as the inventory capacity) couples the otherwise independent control for each SKU. We formulate the problem with this structure as Shared-Resource Stochastic Game (SRSG)and propose an efficient algorithm called Context-aware Decentralized PPO (CD-PPO). Through extensive experiments, we demonstrate that CD-PPO can accelerate the learning procedure compared with standard MARL algorithms.


TD3 with Reverse KL Regularizer for Offline Reinforcement Learning from Mixed Datasets

arXiv.org Artificial Intelligence

We consider an offline reinforcement learning (RL) setting where the agent need to learn from a dataset collected by rolling out multiple behavior policies. There are two challenges for this setting: 1) The optimal trade-off between optimizing the RL signal and the behavior cloning (BC) signal changes on different states due to the variation of the action coverage induced by different behavior policies. Previous methods fail to handle this by only controlling the global trade-off. 2) For a given state, the action distribution generated by different behavior policies may have multiple modes. The BC regularizers in many previous methods are mean-seeking, resulting in policies that select out-of-distribution (OOD) actions in the middle of the modes. In this paper, we address both challenges by using adaptively weighted reverse Kullback-Leibler (KL) divergence as the BC regularizer based on the TD3 algorithm. Our method not only trades off the RL and BC signals with per-state weights (i.e., strong BC regularization on the states with narrow action coverage, and vice versa) but also avoids selecting OOD actions thanks to the mode-seeking property of reverse KL. Empirically, our algorithm can outperform existing offline RL algorithms in the MuJoCo locomotion tasks with the standard D4RL datasets as well as the mixed datasets that combine the standard datasets.