Goto

Collaborating Authors

 Zhang, Chongyang


GUI-Xplore: Empowering Generalizable GUI Agents with One Exploration

arXiv.org Artificial Intelligence

GUI agents hold significant potential to enhance the experience and efficiency of human-device interaction. However, current methods face challenges in generalizing across applications (apps) and tasks, primarily due to two fundamental limitations in existing datasets. First, these datasets overlook developer-induced structural variations among apps, limiting the transferability of knowledge across diverse software environments. Second, many of them focus solely on navigation tasks, which restricts their capacity to represent comprehensive software architectures and complex user interactions. To address these challenges, we introduce GUI-Xplore, a dataset meticulously designed to enhance cross-application and cross-task generalization via an exploration-and-reasoning framework. GUI-Xplore integrates pre-recorded exploration videos providing contextual insights, alongside five hierarchically structured downstream tasks designed to comprehensively evaluate GUI agent capabilities. To fully exploit GUI-Xplore's unique features, we propose Xplore-Agent, a GUI agent framework that combines Action-aware GUI Modeling with Graph-Guided Environment Reasoning. Further experiments indicate that Xplore-Agent achieves a 10% improvement over existing methods in unfamiliar environments, yet there remains significant potential for further enhancement towards truly generalizable GUI agents.


Embracing Uncertainty: Decoupling and De-bias for Robust Temporal Grounding

arXiv.org Artificial Intelligence

Temporal grounding aims to localize temporal boundaries within untrimmed videos by language queries, but it faces the challenge of two types of inevitable human uncertainties: query uncertainty and label uncertainty. The two uncertainties stem from human subjectivity, leading to limited generalization ability of temporal grounding. In this work, we propose a novel DeNet (Decoupling and De-bias) to embrace human uncertainty: Decoupling - We explicitly disentangle each query into a relation feature and a modified feature. The relation feature, which is mainly based on skeleton-like words (including nouns and verbs), aims to extract basic and consistent information in the presence of query uncertainty. Meanwhile, modified feature assigned with style-like words (including adjectives, adverbs, etc) represents the subjective information, and thus brings personalized predictions; De-bias - We propose a de-bias mechanism to generate diverse predictions, aim to alleviate the bias caused by single-style annotations in the presence of label uncertainty. Moreover, we put forward new multi-label metrics to diversify the performance evaluation. Extensive experiments show that our approach is more effective and robust than state-of-the-arts on Charades-STA and ActivityNet Captions datasets.


Action Recognition With Coarse-to-Fine Deep Feature Integration and Asynchronous Fusion

AAAI Conferences

Action recognition is an important yet challenging task in computer vision. In this paper, we propose a novel deep-based framework for action recognition, which improves the recognition accuracy by: 1) deriving more precise features for representing actions, and 2) reducing the asynchrony between different information streams. We first introduce a coarse-to-fine network which extracts shared deep features at different action class granularities and progressively integrates them to obtain a more accurate feature representation for input actions. We further introduce an asynchronous fusion network. It fuses information from different streams by asynchronously integrating stream-wise features at different time points, hence better leveraging the complementary information in different streams. Experimental results on action recognition benchmarks demonstrate that our approach achieves the state-of-the-art performance.