Zhang, Chenlong
Milmer: a Framework for Multiple Instance Learning based Multimodal Emotion Recognition
Wang, Zaitian, He, Jian, Liang, Yu, Hu, Xiyuan, Peng, Tianhao, Wang, Kaixin, Wang, Jiakai, Zhang, Chenlong, Zhang, Weili, Niu, Shuang, Xie, Xiaoyang
Emotions play a crucial role in human behavior and decision-making, making emotion recognition a key area of interest in human-computer interaction (HCI). This study addresses the challenges of emotion recognition by integrating facial expression analysis with electroencephalogram (EEG) signals, introducing a novel multimodal framework-Milmer. The proposed framework employs a transformer-based fusion approach to effectively integrate visual and physiological modalities. It consists of an EEG preprocessing module, a facial feature extraction and balancing module, and a cross-modal fusion module. To enhance visual feature extraction, we fine-tune a pre-trained Swin Transformer on emotion-related datasets. Additionally, a cross-attention mechanism is introduced to balance token representation across modalities, ensuring effective feature integration. A key innovation of this work is the adoption of a multiple instance learning (MIL) approach, which extracts meaningful information from multiple facial expression images over time, capturing critical temporal dynamics often overlooked in previous studies. Extensive experiments conducted on the DEAP dataset demonstrate the superiority of the proposed framework, achieving a classification accuracy of 96.72% in the four-class emotion recognition task. Ablation studies further validate the contributions of each module, highlighting the significance of advanced feature extraction and fusion strategies in enhancing emotion recognition performance. Our code are available at https://github.com/liangyubuaa/Milmer.
DTELS: Towards Dynamic Granularity of Timeline Summarization
Zhang, Chenlong, Zhou, Tong, Cao, Pengfei, Jin, Zhuoran, Chen, Yubo, Liu, Kang, Zhao, Jun
The rapid proliferation of online news has posed significant challenges in tracking the continuous development of news topics. Traditional timeline summarization constructs a chronological summary of the events but often lacks the flexibility to meet the diverse granularity needs. To overcome this limitation, we introduce a new paradigm, Dynamic-granularity TimELine Summarization, (DTELS), which aims to construct adaptive timelines based on user instructions or requirements. This paper establishes a comprehensive benchmark for DTLES that includes: (1) an evaluation framework grounded in journalistic standards to assess the timeline quality across four dimensions: Informativeness, Granular Consistency, Factuality, and Coherence; (2) a large-scale, multi-source dataset with multiple granularity timeline annotations based on a consensus process to facilitate authority; (3) extensive experiments and analysis with two proposed solutions based on Large Language Models (LLMs) and existing state-of-the-art TLS methods. The experimental results demonstrate the effectiveness of LLM-based solutions. However, even the most advanced LLMs struggle to consistently generate timelines that are both informative and granularly consistent, highlighting the challenges of the DTELS task.
Continual Few-shot Event Detection via Hierarchical Augmentation Networks
Zhang, Chenlong, Cao, Pengfei, Chen, Yubo, Liu, Kang, Zhang, Zhiqiang, Sun, Mengshu, Zhao, Jun
Traditional continual event detection relies on abundant labeled data for training, which is often impractical to obtain in real-world applications. In this paper, we introduce continual few-shot event detection (CFED), a more commonly encountered scenario when a substantial number of labeled samples are not accessible. The CFED task is challenging as it involves memorizing previous event types and learning new event types with few-shot samples. To mitigate these challenges, we propose a memory-based framework: Hierarchical Augmentation Networks (HANet). To memorize previous event types with limited memory, we incorporate prototypical augmentation into the memory set. For the issue of learning new event types in few-shot scenarios, we propose a contrastive augmentation module for token representations. Despite comparing with previous state-of-the-art methods, we also conduct comparisons with ChatGPT. Experiment results demonstrate that our method significantly outperforms all of these methods in multiple continual few-shot event detection tasks.