Goto

Collaborating Authors

 Zhang, Chengzhi


Citation Recommendation based on Argumentative Zoning of User Queries

arXiv.org Artificial Intelligence

Due to the increasing of scientific publication, scientific information recommendation has become an urgent problem which can save retrieval cost. There are kinds of information that can be recommended, such as paper recommendation (Mei et al., 2022), author recommendation (Alhoori & Furuta, 2017), journal recommendation (Gündoğan et al., 2023) and so on. Among them, citation recommendation has arisen researchers' attention, which aims to help people find appropriate and necessary work to cite based on the given user queries. This paper aims to improve citation recommendation by considering the argumentative zoning of the citing sentence. Normally, authors will follow a logical framework when writing scientific papers. For example, the International Committee of Medical Journal Editors (ICMJE) recommends the IMRaD (Introduction, Methods, Results and Discussion) structure in writing and editing guidelines of biomedical publications (Editors & others, 2004). The structure of a research article is designed to present the research work clearly and concisely. This structure also helps to make it easy for readers to understand and evaluate the research.


A review on the novelty measurements of academic papers

arXiv.org Artificial Intelligence

Novelty evaluation is vital for the promotion and management of innovation. With the advancement of information techniques and the open data movement, some progress has been made in novelty measurements. Tracking and reviewing novelty measures provides a data-driven way to assess contributions, progress, and emerging directions in the science field. As academic papers serve as the primary medium for the dissemination, validation, and discussion of scientific knowledge, this review aims to offer a systematic analysis of novelty measurements for scientific papers. We began by comparing the differences between scientific novelty and four similar concepts, including originality, scientific innovation, creativity, and scientific breakthrough. Next, we reviewed the types of scientific novelty. Then, we classified existing novelty measures according to data types and reviewed the measures for each type. Subsequently, we surveyed the approaches employed in validating novelty measures and examined the current tools and datasets associated with these measures. Finally, we proposed several open issues for future studies.


UI Layout Generation with LLMs Guided by UI Grammar

arXiv.org Artificial Intelligence

The recent advances in Large Language Models (LLMs) have stimulated interest among researchers and industry professionals, particularly in their application to tasks concerning mobile user interfaces (UIs). This position paper investigates the use of LLMs for UI layout generation. Central to our exploration is the introduction of UI grammar -- a novel approach we proposed to represent the hierarchical structure inherent in UI screens. The aim of this approach is to guide the generative capacities of LLMs more effectively and improve the explainability and controllability of the process. Initial experiments conducted with GPT-4 showed the promising capability of LLMs to produce high-quality user interfaces via in-context learning. Furthermore, our preliminary comparative study suggested the potential of the grammar-based approach in improving the quality of generative results in specific aspects.


Automatic Recognition and Classification of Future Work Sentences from Academic Articles in a Specific Domain

arXiv.org Artificial Intelligence

Future work sentences (FWS) are the particular sentences in academic papers that contain the author's description of their proposed follow-up research direction. This paper presents methods to automatically extract FWS from academic papers and classify them according to the different future directions embodied in the paper's content. FWS recognition methods will enable subsequent researchers to locate future work sentences more accurately and quickly and reduce the time and cost of acquiring the corpus. The current work on automatic identification of future work sentences is relatively small, and the existing research cannot accurately identify FWS from academic papers, and thus cannot conduct data mining on a large scale. Furthermore, there are many aspects to the content of future work, and the subdivision of the content is conducive to the analysis of specific development directions. In this paper, Nature Language Processing (NLP) is used as a case study, and FWS are extracted from academic papers and classified into different types. We manually build an annotated corpus with six different types of FWS. Then, automatic recognition and classification of FWS are implemented using machine learning models, and the performance of these models is compared based on the evaluation metrics. The results show that the Bernoulli Bayesian model has the best performance in the automatic recognition task, with the Macro F1 reaching 90.73%, and the SCIBERT model has the best performance in the automatic classification task, with the weighted average F1 reaching 72.63%. Finally, we extract keywords from FWS and gain a deep understanding of the key content described in FWS, and we also demonstrate that content determination in FWS will be reflected in the subsequent research work by measuring the similarity between future work sentences and the abstracts.


Spatio-Temporal Hybrid Graph Convolutional Network for Traffic Forecasting in Telecommunication Networks

arXiv.org Machine Learning

Telecommunication networks play a critical role in modern society. With the arrival of 5G networks, these systems are becoming even more diversified, integrated, and intelligent. Traffic forecasting is one of the key components in such a system, however, it is particularly challenging due to the complex spatial-temporal dependency. In this work, we consider this problem from the aspect of a cellular network and the interactions among its base stations. We thoroughly investigate the characteristics of cellular network traffic and shed light on the dependency complexities based on data collected from a densely populated metropolis area. Specifically, we observe that the traffic shows both dynamic and static spatial dependencies as well as diverse cyclic temporal patterns. To address these complexities, we propose an effective deep-learning-based approach, namely, Spatio-Temporal Hybrid Graph Convolutional Network (STHGCN). It employs GRUs to model the temporal dependency, while capturing the complex spatial dependency through a hybrid-GCN from three perspectives: spatial proximity, functional similarity, and recent trend similarity. We conduct extensive experiments on real-world traffic datasets collected from telecommunication networks. Our experimental results demonstrate the superiority of the proposed model in that it consistently outperforms both classical methods and state-of-the-art deep learning models, while being more robust and stable.