Zhang, Charlie
Large Language Model (LLM) for Telecommunications: A Comprehensive Survey on Principles, Key Techniques, and Opportunities
Zhou, Hao, Hu, Chengming, Yuan, Ye, Cui, Yufei, Jin, Yili, Chen, Can, Wu, Haolun, Yuan, Dun, Jiang, Li, Wu, Di, Liu, Xue, Zhang, Charlie, Wang, Xianbin, Liu, Jiangchuan
Large language models (LLMs) have received considerable attention recently due to their outstanding comprehension and reasoning capabilities, leading to great progress in many fields. The advancement of LLM techniques also offers promising opportunities to automate many tasks in the telecommunication (telecom) field. After pre-training and fine-tuning, LLMs can perform diverse downstream tasks based on human instructions, paving the way to artificial general intelligence (AGI)-enabled 6G. Given the great potential of LLM technologies, this work aims to provide a comprehensive overview of LLM-enabled telecom networks. In particular, we first present LLM fundamentals, including model architecture, pre-training, fine-tuning, inference and utilization, model evaluation, and telecom deployment. Then, we introduce LLM-enabled key techniques and telecom applications in terms of generation, classification, optimization, and prediction problems. Specifically, the LLM-enabled generation applications include telecom domain knowledge, code, and network configuration generation. After that, the LLM-based classification applications involve network security, text, image, and traffic classification problems. Moreover, multiple LLM-enabled optimization techniques are introduced, such as automated reward function design for reinforcement learning and verbal reinforcement learning. Furthermore, for LLM-aided prediction problems, we discussed time-series prediction models and multi-modality prediction problems for telecom. Finally, we highlight the challenges and identify the future directions of LLM-enabled telecom networks.
Deep Learning and Transfer Learning Architectures for English Premier League Player Performance Forecasting
Frees, Daniel, Ravella, Pranav, Zhang, Charlie
This paper presents a groundbreaking model for forecasting English Premier League (EPL) player performance using convolutional neural networks (CNNs). We evaluate Ridge regression, LightGBM and CNNs on the task of predicting upcoming player FPL score based on historical FPL data over the previous weeks. Our baseline models, Ridge regression and LightGBM, achieve solid performance and emphasize the importance of recent FPL points, influence, creativity, threat, and playtime in predicting EPL player performances. Our optimal CNN architecture achieves better performance with fewer input features and even outperforms the best previous EPL player performance forecasting models in the literature. The optimal CNN architecture also achieves very strong Spearman correlation with player rankings, indicating its strong implications for supporting the development of FPL artificial intelligence (AI) Agents and providing analysis for FPL managers. We additionally perform transfer learning experiments on soccer news data collected from The Guardian, for the same task of predicting upcoming player score, but do not identify a strong predictive signal in natural language news texts, achieving worse performance compared to both the CNN and baseline models. Overall, our CNN-based approach marks a significant advancement in EPL player performance forecasting and lays the foundation for transfer learning to other EPL prediction tasks such as win-loss odds for sports betting and the development of cutting-edge FPL AI Agents.
Nested Construction of Polar Codes via Transformers
Ankireddy, Sravan Kumar, Hebbar, S Ashwin, Wan, Heping, Cho, Joonyoung, Zhang, Charlie
Tailoring polar code construction for decoding algorithms beyond successive cancellation has remained a topic of significant interest in the field. However, despite the inherent nested structure of polar codes, the use of sequence models in polar code construction is understudied. In this work, we propose using a sequence modeling framework to iteratively construct a polar code for any given length and rate under various channel conditions. Simulations show that polar codes designed via sequential modeling using transformers outperform both 5G-NR sequence and Density Evolution based approaches for both AWGN and Rayleigh fading channels.
Towards Intelligent Network Management: Leveraging AI for Network Service Detection
Nguyen, Khuong N., Sehgal, Abhishek, Zhu, Yuming, Choi, Junsu, Chen, Guanbo, Chen, Hao, Ng, Boon Loong, Zhang, Charlie
As the complexity and scale of modern computer networks continue to increase, there has emerged an urgent need for precise traffic analysis, which plays a pivotal role in cutting-edge wireless connectivity technologies. This study focuses on leveraging Machine Learning methodologies to create an advanced network traffic classification system. We introduce a novel data-driven approach that excels in identifying various network service types in real-time, by analyzing patterns within the network traffic. Our method organizes similar kinds of network traffic into distinct categories, referred to as network services, based on latency requirement. Furthermore, it decomposes the network traffic stream into multiple, smaller traffic flows, with each flow uniquely carrying a specific service. Our ML models are trained on a dataset comprised of labeled examples representing different network service types collected on various Wi-Fi network conditions. Upon evaluation, our system demonstrates a remarkable accuracy in distinguishing the network services. These results emphasize the substantial promise of integrating Artificial Intelligence in wireless technologies. Such an approach encourages more efficient energy consumption, enhances Quality of Service assurance, and optimizes the allocation of network resources, thus laying a solid groundwork for the development of advanced intelligent networks.