Plotting

 Zhang, Caiqi


Supposedly Equivalent Facts That Aren't? Entity Frequency in Pre-training Induces Asymmetry in LLMs

arXiv.org Artificial Intelligence

Understanding and mitigating hallucinations in Large Language Models (LLMs) is crucial for ensuring reliable content generation. While previous research has primarily focused on "when" LLMs hallucinate, our work explains "why" and directly links model behaviour to the pre-training data that forms their prior knowledge. Specifically, we demonstrate that an asymmetry exists in the recognition of logically equivalent facts, which can be attributed to frequency discrepancies of entities appearing as subjects versus objects. Given that most pre-training datasets are inaccessible, we leverage the fully open-source OLMo series by indexing its Dolma dataset to estimate entity frequencies. Using relational facts (represented as triples) from Wikidata5M, we construct probing datasets to isolate this effect. Our experiments reveal that facts with a high-frequency subject and a low-frequency object are better recognised than their inverse, despite their logical equivalence. The pattern reverses in low-to-high frequency settings, and no statistically significant asymmetry emerges when both entities are high-frequency. These findings highlight the influential role of pre-training data in shaping model predictions and provide insights for inferring the characteristics of pre-training data in closed or partially closed LLMs.


LoGU: Long-form Generation with Uncertainty Expressions

arXiv.org Artificial Intelligence

While Large Language Models (LLMs) demonstrate impressive capabilities, they still struggle with generating factually incorrect content (i.e., hallucinations). A promising approach to mitigate this issue is enabling models to express uncertainty when unsure. Previous research on uncertainty modeling has primarily focused on short-form QA, but realworld applications often require much longer responses. In this work, we introduce the task of Long-form Generation with Uncertainty(LoGU). We identify two key challenges: Uncertainty Suppression, where models hesitate to express uncertainty, and Uncertainty Misalignment, where models convey uncertainty inaccurately. To tackle these challenges, we propose a refinement-based data collection framework and a two-stage training pipeline. Our framework adopts a divide-and-conquer strategy, refining uncertainty based on atomic claims. The collected data are then used in training through supervised fine-tuning (SFT) and direct preference optimization (DPO) to enhance uncertainty expression. Extensive experiments on three long-form instruction following datasets show that our method significantly improves accuracy, reduces hallucinations, and maintains the comprehensiveness of responses.


Atomic Calibration of LLMs in Long-Form Generations

arXiv.org Artificial Intelligence

Large language models (LLMs) often suffer from hallucinations, posing significant challenges for real-world applications. Confidence calibration, which estimates the underlying uncertainty of model predictions, is essential to enhance the LLMs' trustworthiness. Existing research on LLM calibration has primarily focused on short-form tasks, providing a single confidence score at the response level (macro calibration). However, this approach is insufficient for long-form generations, where responses often contain more complex statements and may include both accurate and inaccurate information. Therefore, we introduce atomic calibration, a novel approach that evaluates factuality calibration at a fine-grained level by breaking down long responses into atomic claims. We classify confidence elicitation methods into discriminative and generative types and demonstrate that their combination can enhance calibration. Our extensive experiments on various LLMs and datasets show that atomic calibration is well-suited for long-form generation and can also improve macro calibration results. Additionally, atomic calibration reveals insightful patterns in LLM confidence throughout the generation process.


Conformity in Large Language Models

arXiv.org Artificial Intelligence

The conformity effect describes the tendency of individuals to align their responses with the majority. Studying this bias in large language models (LLMs) is crucial, as LLMs are increasingly used in various information-seeking and decision-making tasks as conversation partners to improve productivity. Thus, conformity to incorrect responses can compromise their effectiveness. In this paper, we adapt psychological experiments to examine the extent of conformity in state-of-the-art LLMs. Our findings reveal that all models tested exhibit varying levels of conformity toward the majority, regardless of their initial choice or correctness, across different knowledge domains. Notably, we are the first to show that LLMs are more likely to conform when they are more uncertain in their own prediction. We further explore factors that influence conformity, such as training paradigms and input characteristics, finding that instruction-tuned models are less susceptible to conformity, while increasing the naturalness of majority tones amplifies conformity. Finally, we propose two interventions--Devil's Advocate and Question Distillation--to mitigate conformity, providing insights into building more robust language models.


TopViewRS: Vision-Language Models as Top-View Spatial Reasoners

arXiv.org Artificial Intelligence

Top-view perspective denotes a typical way in which humans read and reason over different types of maps, and it is vital for localization and navigation of humans as well as of `non-human' agents, such as the ones backed by large Vision-Language Models (VLMs). Nonetheless, spatial reasoning capabilities of modern VLMs remain unattested and underexplored. In this work, we thus study their capability to understand and reason over spatial relations from the top view. The focus on top view also enables controlled evaluations at different granularity of spatial reasoning; we clearly disentangle different abilities (e.g., recognizing particular objects versus understanding their relative positions). We introduce the TopViewRS (Top-View Reasoning in Space) dataset, consisting of 11,384 multiple-choice questions with either realistic or semantic top-view map as visual input. We then use it to study and evaluate VLMs across 4 perception and reasoning tasks with different levels of complexity. Evaluation of 10 representative open- and closed-source VLMs reveals the gap of more than 50% compared to average human performance, and it is even lower than the random baseline in some cases. Although additional experiments show that Chain-of-Thought reasoning can boost model capabilities by 5.82% on average, the overall performance of VLMs remains limited. Our findings underscore the critical need for enhanced model capability in top-view spatial reasoning and set a foundation for further research towards human-level proficiency of VLMs in real-world multimodal tasks.


Do We Need Language-Specific Fact-Checking Models? The Case of Chinese

arXiv.org Artificial Intelligence

This paper investigates the potential benefits of language-specific fact-checking models, focusing on the case of Chinese. We demonstrate the limitations of methods such as translating Chinese claims and evidence into English or directly using multilingual large language models (e.g. GPT4), highlighting the need for language-specific systems. We further develop a state-of-the-art Chinese fact-checking system that, in contrast to previous approaches which treat evidence selection as a pairwise sentence classification task, considers the context of sentences. We also create an adversarial dataset to identify biases in our model, and while they are present as in English language datasets and models, they are often specific to the Chinese culture. Our study emphasizes the importance of language-specific fact-checking models to effectively combat misinformation.


Natural Language is All a Graph Needs

arXiv.org Artificial Intelligence

The emergence of large-scale pre-trained language models, such as ChatGPT, has revolutionized various research fields in artificial intelligence. Transformers-based large language models (LLMs) have gradually replaced CNNs and RNNs to unify fields of computer vision and natural language processing. Compared with the data that exists relatively independently such as images, videos or texts, graph is a type of data that contains rich structural and relational information. Meanwhile, natural language, as one of the most expressive mediums, excels in describing complex structures. However, existing work on incorporating graph learning problems into the generative language modeling framework remains very limited. As the importance of large language models continues to grow, it becomes essential to explore whether LLMs can also replace GNNs as the foundation model for graphs. In this paper, we propose InstructGLM (Instruction-finetuned Graph Language Model), systematically design highly scalable prompts based on natural language instructions, and use natural language to describe the geometric structure and node features of the graph for instruction tuning an LLM to perform learning and inference on graphs in a generative manner. Our method exceeds all competitive GNN baselines on ogbn-arxiv, Cora and PubMed datasets, which demonstrates the effectiveness of our method and sheds light on generative large language models as the foundation model for graph machine learning.


Towards Temporal Edge Regression: A Case Study on Agriculture Trade Between Nations

arXiv.org Artificial Intelligence

Recently, Graph Neural Networks (GNNs) have shown promising performance in tasks on dynamic graphs such as node classification, link prediction and graph regression. However, few work has studied the temporal edge regression task which has important real-world applications. In this paper, we explore the application of GNNs to edge regression tasks in both static and dynamic settings, focusing on predicting food and agriculture trade values between nations. We introduce three simple yet strong baselines and comprehensively evaluate one static and three dynamic GNN models using the UN Trade dataset. Our experimental results reveal that the baselines exhibit remarkably strong performance across various settings, highlighting the inadequacy of existing GNNs. We also find that TGN outperforms other GNN models, suggesting TGN is a more appropriate choice for edge regression tasks. Moreover, we note that the proportion of negative edges in the training samples significantly affects the test performance. The companion source code can be found at: https://github.com/scylj1/GNN_