Zhang, Bowen
OR-LLM-Agent: Automating Modeling and Solving of Operations Research Optimization Problem with Reasoning Large Language Model
Zhang, Bowen, Luo, Pengcheng
Operations Research (OR) has been widely applied in various fields such as resource allocation, production planning, and supply chain management. However, addressing real-world OR problems requires OR experts to perform mathematical modeling and programmers to develop solution algorithms. This traditional method, heavily reliant on experts, is costly and has long development cycles, severely limiting the widespread adoption of OR techniques. Few have considered using Artificial Intelligence (AI) to replace professionals to achieve fully automated solutions for OR problems. We propose OR-LLM-Agent, the first AI agent that enables end-to-end automation for solving real-world OR problems. OR-LLM-Agent leverages the Chain-of-Thought (CoT) reasoning capabilities of Large Language Models (LLMs) to translate natural language problem descriptions into formal mathematical models and automatically generate Gurobi solver code. In OR-LLM-Agent, OR-CodeAgent is designed to automate code execution and repair within a sandbox environment, facilitating the derivation of the final solution. Due to the lack of dedicated benchmark datasets for evaluating the automated solving of OR problems, we construct a benchmark dataset comprising 83 real-world OR problems described in natural language. We conduct comparative experiments with state-of-the-art (SOTA) reasoning LLMs, including GPT-o3-mini, DeepSeek-R1, and Gemini 2.0 Flash Thinking. The OR-LLM-Agent achieved the highest pass rate of 100% and the highest solution accuracy of 85%, demonstrating the feasibility of automated OR problem-solving. Data and code have been publicly available at https://github.com/bwz96sco/or_llm_agent.
CLIP-UP: A Simple and Efficient Mixture-of-Experts CLIP Training Recipe with Sparse Upcycling
Wang, Xinze, Chen, Chen, Yang, Yinfei, Chen, Hong-You, Zhang, Bowen, Pal, Aditya, Zhu, Xiangxin, Du, Xianzhi
Mixture-of-Experts (MoE) models are crucial for scaling model capacity while controlling inference costs. While integrating MoE into multimodal models like CLIP improves performance, training these models is notoriously challenging and expensive. We propose CLIP-Upcycling (CLIP-UP), an efficient alternative training strategy that converts a pre-trained dense CLIP model into a sparse MoE architecture. Through extensive experimentation with various settings and auxiliary losses, we demonstrate that CLIP-UP significantly reduces training complexity and cost. Remarkably, our sparse CLIP B/16 model, trained with CLIP-UP, outperforms its dense counterpart by 7.2% and 6.6% on COCO and Flickr30k text-to-image Recall@1 benchmarks respectively. It even surpasses the larger CLIP L/14 model on this task while using only 30% of the inference FLOPs. We further demonstrate the generalizability of our training recipe across different scales, establishing sparse upcycling as a practical and scalable approach for building efficient, high-performance CLIP models.
STIV: Scalable Text and Image Conditioned Video Generation
Lin, Zongyu, Liu, Wei, Chen, Chen, Lu, Jiasen, Hu, Wenze, Fu, Tsu-Jui, Allardice, Jesse, Lai, Zhengfeng, Song, Liangchen, Zhang, Bowen, Chen, Cha, Fei, Yiran, Jiang, Yifan, Li, Lezhi, Sun, Yizhou, Chang, Kai-Wei, Yang, Yinfei
The field of video generation has made remarkable advancements, yet there remains a pressing need for a clear, systematic recipe that can guide the development of robust and scalable models. In this work, we present a comprehensive study that systematically explores the interplay of model architectures, training recipes, and data curation strategies, culminating in a simple and scalable text-image-conditioned video generation method, named STIV. Our framework integrates image condition into a Diffusion Transformer (DiT) through frame replacement, while incorporating text conditioning via a joint image-text conditional classifier-free guidance. This design enables STIV to perform both text-to-video (T2V) and text-image-to-video (TI2V) tasks simultaneously. Additionally, STIV can be easily extended to various applications, such as video prediction, frame interpolation, multi-view generation, and long video generation, etc. With comprehensive ablation studies on T2I, T2V, and TI2V, STIV demonstrate strong performance, despite its simple design. An 8.7B model with 512 resolution achieves 83.1 on VBench T2V, surpassing both leading open and closed-source models like CogVideoX-5B, Pika, Kling, and Gen-3. The same-sized model also achieves a state-of-the-art result of 90.1 on VBench I2V task at 512 resolution. By providing a transparent and extensible recipe for building cutting-edge video generation models, we aim to empower future research and accelerate progress toward more versatile and reliable video generation solutions.
Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation
Yang, Xianghui, Shi, Huiwen, Zhang, Bowen, Yang, Fan, Wang, Jiacheng, Zhao, Hongxu, Liu, Xinhai, Wang, Xinzhou, Lin, Qingxiang, Yu, Jiaao, Wang, Lifu, Chen, Zhuo, Liu, Sicong, Liu, Yuhong, Yang, Yong, Wang, Di, Jiang, Jie, Guo, Chunchao
While 3D generative models have greatly improved artists' workflows, the existing diffusion models for 3D generation suffer from slow generation and poor generalization. To address this issue, we propose a two-stage approach named Hunyuan3D-1.0 including a lite version and a standard version, that both support text- and image-conditioned generation. In the first stage, we employ a multi-view diffusion model that efficiently generates multi-view RGB in approximately 4 seconds. These multi-view images capture rich details of the 3D asset from different viewpoints, relaxing the tasks from single-view to multi-view reconstruction. In the second stage, we introduce a feed-forward reconstruction model that rapidly and faithfully reconstructs the 3D asset given the generated multi-view images in approximately 7 seconds. The reconstruction network learns to handle noises and in-consistency introduced by the multi-view diffusion and leverages the available information from the condition image to efficiently recover the 3D structure. Our framework involves the text-to-image model, i.e., Hunyuan-DiT, making it a unified framework to support both text- and image-conditioned 3D generation. Our standard version has 3x more parameters than our lite and other existing model. Our Hunyuan3D-1.0 achieves an impressive balance between speed and quality, significantly reducing generation time while maintaining the quality and diversity of the produced assets.
A Survey of Stance Detection on Social Media: New Directions and Perspectives
Zhang, Bowen, Dai, Genan, Niu, Fuqiang, Yin, Nan, Fan, Xiaomao, Wang, Senzhang, Cao, Xiaochun, Huang, Hu
In modern digital environments, users frequently express opinions on contentious topics, providing a wealth of information on prevailing attitudes. The systematic analysis of these opinions offers valuable insights for decision-making in various sectors, including marketing and politics. As a result, stance detection has emerged as a crucial subfield within affective computing, enabling the automatic detection of user stances in social media conversations and providing a nuanced understanding of public sentiment on complex issues. Recent years have seen a surge of research interest in developing effective stance detection methods, with contributions from multiple communities, including natural language processing, web science, and social computing. This paper provides a comprehensive survey of stance detection techniques on social media, covering task definitions, datasets, approaches, and future works. We review traditional stance detection models, as well as state-of-the-art methods based on large language models, and discuss their strengths and limitations. Our survey highlights the importance of stance detection in understanding public opinion and sentiment, and identifies gaps in current research. We conclude by outlining potential future directions for stance detection on social media, including the need for more robust and generalizable models, and the importance of addressing emerging challenges such as multi-modal stance detection and stance detection in low-resource languages.
Improve Vision Language Model Chain-of-thought Reasoning
Zhang, Ruohong, Zhang, Bowen, Li, Yanghao, Zhang, Haotian, Sun, Zhiqing, Gan, Zhe, Yang, Yinfei, Pang, Ruoming, Yang, Yiming
Chain-of-thought (CoT) reasoning in vision language models (VLMs) is crucial for improving interpretability and trustworthiness. However, current training recipes lack robust CoT reasoning data, relying on datasets dominated by short annotations with minimal rationales. In this work, we show that training VLM on short answers does not generalize well to reasoning tasks that require more detailed responses. To address this, we propose a two-fold approach. First, we distill rationales from GPT-4o model to enrich the training data and fine-tune VLMs, boosting their CoT performance. Second, we apply reinforcement learning to further calibrate reasoning quality. Specifically, we construct positive (correct) and negative (incorrect) pairs of model-generated reasoning chains, by comparing their predictions with annotated short answers. Using this pairwise data, we apply the Direct Preference Optimization algorithm to refine the model's reasoning abilities. Our experiments demonstrate significant improvements in CoT reasoning on benchmark datasets and better generalization to direct answer prediction as well. This work emphasizes the importance of incorporating detailed rationales in training and leveraging reinforcement learning to strengthen the reasoning capabilities of VLMs.
ReeFRAME: Reeb Graph based Trajectory Analysis Framework to Capture Top-Down and Bottom-Up Patterns of Life
Gudavalli, Chandrakanth, Zhang, Bowen, Levenson, Connor, Lore, Kin Gwn, Manjunath, B. S.
In this paper, we present ReeFRAME, a scalable Reeb graph-based framework designed to analyze vast volumes of GPS-enabled human trajectory data generated at 1Hz frequency. ReeFRAME models Patterns-of-life (PoL) at both the population and individual levels, utilizing Multi-Agent Reeb Graphs (MARGs) for population-level patterns and Temporal Reeb Graphs (TERGs) for individual trajectories. The framework's linear algorithmic complexity relative to the number of time points ensures scalability for anomaly detection. We validate ReeFRAME on six large-scale anomaly detection datasets, simulating real-time patterns with up to 500,000 agents over two months.
Weak-eval-Strong: Evaluating and Eliciting Lateral Thinking of LLMs with Situation Puzzles
Chen, Qi, Zhang, Bowen, Wang, Gang, Wu, Qi
While advancements in NLP have significantly improved the performance of Large Language Models (LLMs) on tasks requiring vertical thinking, their lateral thinking capabilities remain under-explored and challenging to measure due to the complexity of assessing creative thought processes and the scarcity of relevant data. To address these challenges, we introduce SPLAT, a benchmark leveraging Situation Puzzles to evaluate and elicit LAteral Thinking of LLMs. This benchmark, containing 975 graded situation puzzles across three difficulty levels, employs a new multi-turn player-judge framework instead of the traditional model-based evaluation, which often necessitates a stronger evaluation model. This framework simulates an interactive game where the model (player) asks the evaluation model (judge) questions about an incomplete story to infer the full scenario. The judge answers based on a detailed reference scenario or evaluates if the player's predictions align with the reference one. This approach lessens dependence on more robust evaluation models, enabling the assessment of state-of-the-art LLMs. The experiments demonstrate that a robust evaluation model, such as WizardLM-2, closely matches human judgements in both intermediate question-answering and final scenario accuracy, achieving over 80% agreement-similar to the agreement levels among humans. Furthermore, applying data and reasoning processes from our benchmark to other lateral thinking-related benchmarks, e.g., RiddleSense and BrainTeaser, leads to performance enhancements. This suggests that our benchmark effectively evaluates and elicits the lateral thinking abilities of LLMs. Code is available at: https://github.com/chenqi008/LateralThinking.
Toward Physics-guided Time Series Embedding
Hu, Jiaxi, Zhang, Bowen, Wen, Qingsong, Tsung, Fugee, Liang, Yuxuan
In various scientific and engineering fields, the primary research areas have revolved around physics-based dynamical systems modeling and data-driven time series analysis. According to the embedding theory, dynamical systems and time series can be mutually transformed using observation functions and physical reconstruction techniques. Based on this, we propose Embedding Duality Theory, where the parameterized embedding layer essentially provides a linear estimation of the non-linear time series dynamics. This theory enables us to bypass the parameterized embedding layer and directly employ physical reconstruction techniques to acquire a data embedding representation. Utilizing physical priors results in a 10X reduction in parameters, a 3X increase in speed, and maximum performance boosts of 18% in expert, 22% in few-shot, and 53\% in zero-shot tasks without any hyper-parameter tuning. All methods are encapsulated as a plug-and-play module
MM-Ego: Towards Building Egocentric Multimodal LLMs
Ye, Hanrong, Zhang, Haotian, Daxberger, Erik, Chen, Lin, Lin, Zongyu, Li, Yanghao, Zhang, Bowen, You, Haoxuan, Xu, Dan, Gan, Zhe, Lu, Jiasen, Yang, Yinfei
This research aims to comprehensively explore building a multimodal foundation model for egocentric video understanding. To achieve this goal, we work on three fronts. First, as there is a lack of QA data for egocentric video understanding, we develop a data engine that efficiently generates 7M high-quality QA samples for egocentric videos ranging from 30 seconds to one hour long, based on human-annotated data. This is currently the largest egocentric QA dataset. Second, we contribute a challenging egocentric QA benchmark with 629 videos and 7,026 questions to evaluate the models' ability in recognizing and memorizing visual details across videos of varying lengths. We introduce a new de-biasing evaluation method to help mitigate the unavoidable language bias present in the models being evaluated. Third, we propose a specialized multimodal architecture featuring a novel "Memory Pointer Prompting" mechanism. This design includes a global glimpse step to gain an overarching understanding of the entire video and identify key visual information, followed by a fallback step that utilizes the key visual information to generate responses. This enables the model to more effectively comprehend extended video content. With the data, benchmark, and model, we successfully build MM-Ego, an egocentric multimodal LLM that shows powerful performance on egocentric video understanding.