Goto

Collaborating Authors

 Zhan, Haolan


G3Detector: General GPT-Generated Text Detector

arXiv.org Artificial Intelligence

The burgeoning progress in the field of Large Language Models (LLMs) heralds significant benefits due to their unparalleled capacities. However, it is critical to acknowledge the potential misuse of these models, which could give rise to a spectrum of social and ethical dilemmas. Despite numerous preceding efforts centered around distinguishing synthetic text, most existing detection systems fail to identify data synthesized by the latest LLMs, such as ChatGPT and GPT-4. In response to this challenge, we introduce an unpretentious yet potent detection approach proficient in identifying synthetic text across a wide array of fields. Moreover, our detector demonstrates outstanding performance uniformly across various model architectures and decoding strategies. It also possesses the capability to identify text generated utilizing a potent detection-evasion technique. Our comprehensive research underlines our commitment to boosting the robustness and efficiency of machine-generated text detection mechanisms, particularly in the context of swiftly progressing and increasingly adaptive AI technologies.


SocialDial: A Benchmark for Socially-Aware Dialogue Systems

arXiv.org Artificial Intelligence

Dialogue systems have been widely applied in many scenarios and are now more powerful and ubiquitous than ever before. With large neural models and massive available data, current dialogue systems have access to more knowledge than any people in their life. However, current dialogue systems still do not perform at a human level. One major gap between conversational agents and humans lies in their abilities to be aware of social norms. The development of socially-aware dialogue systems is impeded due to the lack of resources. In this paper, we present the first socially-aware dialogue corpus - SocialDial, based on Chinese social culture. SocialDial consists of two parts: 1,563 multi-turn dialogues between two human speakers with fine-grained labels, and 4,870 synthetic conversations generated by ChatGPT. The human corpus covers five categories of social norms, which have 14 sub-categories in total. Specifically, it contains social factor annotations including social relation, context, social distance, and social norms. However, collecting sufficient socially-aware dialogues is costly. Thus, we harness the power of ChatGPT and devise an ontology-based synthetic data generation framework. This framework is able to generate synthetic data at scale. To ensure the quality of synthetic dialogues, we design several mechanisms for quality control during data collection. Finally, we evaluate our dataset using several pre-trained models, such as BERT and RoBERTa. Comprehensive empirical results based on state-of-the-art neural models demonstrate that modeling of social norms for dialogue systems is a promising research direction. To the best of our knowledge, SocialDial is the first socially-aware dialogue dataset that covers multiple social factors and has fine-grained labels.


Towards Zero-Shot Personalized Table-to-Text Generation with Contrastive Persona Distillation

arXiv.org Artificial Intelligence

Existing neural methods have shown great potentials towards generating informative text from structured tabular data as well as maintaining high content fidelity. However, few of them shed light on generating personalized expressions, which often requires well-aligned persona-table-text datasets that are difficult to obtain. To overcome these obstacles, we explore personalized table-to-text generation under a zero-shot setting, by assuming no well-aligned persona-table-text triples are required during training. To this end, we firstly collect a set of unpaired persona information and then propose a semi-supervised approach with contrastive persona distillation (S2P-CPD) to generate personalized context. Specifically, tabular data and persona information are firstly represented as latent variables separately. Then, we devise a latent space fusion technique to distill persona information into the table representation. Besides, a contrastive-based discriminator is employed to guarantee the style consistency between the generated context and its corresponding persona. Experimental results on two benchmarks demonstrate S2P-CPD's ability on keeping both content fidelity and personalized expressions.


Let's Negotiate! A Survey of Negotiation Dialogue Systems

arXiv.org Artificial Intelligence

Negotiation is one of the crucial abilities in human communication, and there has been a resurgent research interest in negotiation dialogue systems recently, which goal is to empower intelligent agents with such ability that can efficiently help humans resolve conflicts or reach beneficial agreements. Although there have been many explorations in negotiation dialogue systems, a systematic review of this task has to date remained notably absent. To this end, we aim to fill this gap by reviewing contemporary studies in the emerging field of negotiation dialogue systems, covering benchmarks, evaluations, and methodologies. Furthermore, we also discuss potential future directions, including multi-modal, multi-party, and cross-cultural negotiation scenarios. Our goal is to provide the community with a systematic overview of negotiation dialogue systems and to inspire future research.