Zhai, Tongqing
CBW: Towards Dataset Ownership Verification for Speaker Verification via Clustering-based Backdoor Watermarking
Li, Yiming, Yan, Kaiying, Shao, Shuo, Zhai, Tongqing, Xia, Shu-Tao, Qin, Zhan, Tao, Dacheng
With the increasing adoption of deep learning in speaker verification, large-scale speech datasets have become valuable intellectual property. To audit and prevent the unauthorized usage of these valuable released datasets, especially in commercial or open-source scenarios, we propose a novel dataset ownership verification method. Our approach introduces a clustering-based backdoor watermark (CBW), enabling dataset owners to determine whether a suspicious third-party model has been trained on a protected dataset under a black-box setting. The CBW method consists of two key stages: dataset watermarking and ownership verification. During watermarking, we implant multiple trigger patterns in the dataset to make similar samples (measured by their feature similarities) close to the same trigger while dissimilar samples are near different triggers. This ensures that any model trained on the watermarked dataset exhibits specific misclassification behaviors when exposed to trigger-embedded inputs. To verify dataset ownership, we design a hypothesis-test-based framework that statistically evaluates whether a suspicious model exhibits the expected backdoor behavior. We conduct extensive experiments on benchmark datasets, verifying the effectiveness and robustness of our method against potential adaptive attacks. The code for reproducing main experiments is available at https://github.com/Radiant0726/CBW
Backdoor Attack in the Physical World
Li, Yiming, Zhai, Tongqing, Jiang, Yong, Li, Zhifeng, Xia, Shu-Tao
Backdoor attack intends to inject hidden backdoor into the deep neural networks (DNNs), such that the prediction of infected models will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger. Currently, most existing backdoor attacks adopted the setting of static trigger, $i.e.,$ triggers across the training and testing images follow the same appearance and are located in the same area. In this paper, we revisit this attack paradigm by analyzing trigger characteristics. We demonstrate that this attack paradigm is vulnerable when the trigger in testing images is not consistent with the one used for training. As such, those attacks are far less effective in the physical world, where the location and appearance of the trigger in the digitized image may be different from that of the one used for training. Moreover, we also discuss how to alleviate such vulnerability. We hope that this work could inspire more explorations on backdoor properties, to help the design of more advanced backdoor attack and defense methods.