Goto

Collaborating Authors

 Zhai, Chengxiang


Cache-of-Thought: Master-Apprentice Framework for Cost-Effective Vision Language Model Inference

arXiv.org Artificial Intelligence

Vision Language Models (VLMs) have achieved remarkable success in a wide range of vision applications of increasing complexity and scales, yet choosing the right VLM model size involves a trade-off between response quality and cost. While smaller VLMs are cheaper to run, they typically produce responses only marginally better than random guessing on benchmarks such as MMMU. In this paper, we propose Cache of Thought (CoT), a master apprentice framework for collaborative inference between large and small VLMs. CoT manages high quality query results from large VLMs (master) in a cache, which are then selected via a novel multi modal retrieval and in-context learning to aid the performance of small VLMs (apprentice). We extensively evaluate CoT on various widely recognized and challenging general VQA benchmarks, and show that CoT increases overall VQA performance by up to 7.7% under the same budget, and specifically boosts the performance of apprentice VLMs by up to 36.6%.


The Law of Knowledge Overshadowing: Towards Understanding, Predicting, and Preventing LLM Hallucination

arXiv.org Artificial Intelligence

Hallucination is a persistent challenge in large language models (LLMs), where even with rigorous quality control, models often generate distorted facts. This paradox, in which error generation continues despite high-quality training data, calls for a deeper understanding of the underlying LLM mechanisms. To address it, we propose a novel concept: knowledge overshadowing, where model's dominant knowledge can obscure less prominent knowledge during text generation, causing the model to fabricate inaccurate details. Building on this idea, we introduce a novel framework to quantify factual hallucinations by modeling knowledge overshadowing. Central to our approach is the log-linear law, which predicts that the rate of factual hallucination increases linearly with the logarithmic scale of (1) Knowledge Popularity, (2) Knowledge Length, and (3) Model Size. The law provides a means to preemptively quantify hallucinations, offering foresight into their occurrence even before model training or inference. Built on overshadowing effect, we propose a new decoding strategy CoDa, to mitigate hallucinations, which notably enhance model factuality on Overshadow (27.9%), MemoTrap (13.1%) and NQ-Swap (18.3%). Our findings not only deepen understandings of the underlying mechanisms behind hallucinations but also provide actionable insights for developing more predictable and controllable language models.


ORBIT: Cost-Effective Dataset Curation for Large Language Model Domain Adaptation with an Astronomy Case Study

arXiv.org Artificial Intelligence

Recent advances in language modeling demonstrate the need for high-quality domain-specific training data, especially for tasks that require specialized knowledge. General-purpose models, while versatile, often lack the depth needed for expert-level tasks because of limited domain-specific information. Domain adaptation training can enhance these models, but it demands substantial, high-quality data. To address this, we propose ORBIT, a cost-efficient methodology for curating massive, high-quality domain-specific datasets from noisy web sources, tailored for training specialist large language models. Using astronomy as a primary case study, we refined the 1.3T-token FineWeb-Edu dataset into a high-quality, 10B-token subset focused on astronomy. Fine-tuning \textsc{LLaMA-3-8B} on a 1B-token astronomy subset improved performance on the MMLU astronomy benchmark from 69\% to 76\% and achieved top results on AstroBench, an astronomy-specific benchmark. Moreover, our model (Orbit-LLaMA) outperformed \textsc{LLaMA-3-8B-base}, with GPT-4o evaluations preferring it in 73\% of cases across 1000 astronomy-specific questions. Additionally, we validated ORBIT's generalizability by applying it to law and medicine, achieving a significant improvement of data quality compared to an unfiltered baseline. We open-source the ORBIT methodology, including the curated datasets, the codebase, and the resulting model at \href{https://github.com/ModeEric/ORBIT-Llama}{https://github.com/ModeEric/ORBIT-Llama}.


What Makes In-context Learning Effective for Mathematical Reasoning: A Theoretical Analysis

arXiv.org Artificial Intelligence

Owing to the capability of in-context learning, large language models (LLMs) have shown impressive performance across diverse mathematical reasoning benchmarks. However, we find that few-shot demonstrations can sometimes bring negative performance and their effectiveness on LLMs' reasoning abilities remains unreliable. To this end, in this paper, we aim to theoretically analyze the impact of in-context demonstrations on LLMs' reasoning performance. We prove that the reasoning efficacy (measured by empirical prediction loss) can be bounded by a LLM-oriented semantic similarity and an inference stability of demonstrations, which is general for both one-shot and few-shot scenarios. Based on this finding, we propose a straightforward, generalizable, and low-complexity demonstration selection method named LMS3. It can adaptively facilitate to select the most pertinent samples for different LLMs and includes a novel demonstration rejection mechanism to automatically filter out samples that are unsuitable for few-shot learning. Through experiments on three representative benchmarks, two LLM backbones, and multiple few-shot settings, we verify that our LMS3 has superiority and achieves consistent improvements on all datasets, which existing methods have been unable to accomplish.


Learning by Analogy: Enhancing Few-Shot Prompting for Math Word Problem Solving with Computational Graph-Based Retrieval

arXiv.org Artificial Intelligence

Large language models (LLMs) are known to struggle with complicated reasoning tasks such as math word problems (MWPs). In this paper, we present how analogy from similarly structured questions can improve LLMs' problem-solving capabilities for MWPs. Specifically, we rely on the retrieval of problems with similar computational graphs to the given question to serve as exemplars in the prompt, providing the correct reasoning path for the generation model to refer to. Empirical results across six math word problem datasets demonstrate the effectiveness of our proposed method, which achieves a significant improvement of up to 6.7 percent on average in absolute value, compared to baseline methods. These results highlight our method's potential in addressing the reasoning challenges in current LLMs.


If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code Empowers Large Language Models to Serve as Intelligent Agents

arXiv.org Artificial Intelligence

The prominent large language models (LLMs) of today differ from past language models not only in size, but also in the fact that they are trained on a combination of natural language and formal language (code). As a medium between humans and computers, code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity. In this survey, we present an overview of the various benefits of integrating code into LLMs' training data. Specifically, beyond enhancing LLMs in code generation, we observe that these unique properties of code help (i) unlock the reasoning ability of LLMs, enabling their applications to a range of more complex natural language tasks; (ii) steer LLMs to produce structured and precise intermediate steps, which can then be connected to external execution ends through function calls; and (iii) take advantage of code compilation and execution environment, which also provides diverse feedback for model improvement. In addition, we trace how these profound capabilities of LLMs, brought by code, have led to their emergence as intelligent agents (IAs) in situations where the ability to understand instructions, decompose goals, plan and execute actions, and refine from feedback are crucial to their success on downstream tasks. Finally, we present several key challenges and future directions of empowering LLMs with code.


Learning by Applying: A General Framework for Mathematical Reasoning via Enhancing Explicit Knowledge Learning

arXiv.org Artificial Intelligence

Mathematical reasoning is one of the crucial abilities of general artificial intelligence, which requires machines to master mathematical logic and knowledge from solving problems. However, existing approaches are not transparent (thus not interpretable) in terms of what knowledge has been learned and applied in the reasoning process. In this paper, we propose a general Learning by Applying (LeAp) framework to enhance existing models (backbones) in a principled way by explicit knowledge learning. In LeAp, we perform knowledge learning in a novel problem-knowledge-expression paradigm, with a Knowledge Encoder to acquire knowledge from problem data and a Knowledge Decoder to apply knowledge for expression reasoning. The learned mathematical knowledge, including word-word relations and word-operator relations, forms an explicit knowledge graph, which bridges the knowledge "learning" and "applying" organically. Moreover, for problem solving, we design a semantics-enhanced module and a reasoning-enhanced module that apply knowledge to improve the problem comprehension and symbol reasoning abilities of any backbone, respectively. We theoretically prove the superiority of LeAp's autonomous learning mechanism. Experiments on three real-world datasets show that LeAp improves all backbones' performances, learns accurate knowledge, and achieves a more interpretable reasoning process.


DeepQAMVS: Query-Aware Hierarchical Pointer Networks for Multi-Video Summarization

arXiv.org Artificial Intelligence

The recent growth of web video sharing platforms has increased the demand for systems that can efficiently browse, retrieve and summarize video content. Query-aware multi-video summarization is a promising technique that caters to this demand. In this work, we introduce a novel Query-Aware Hierarchical Pointer Network for Multi-Video Summarization, termed DeepQAMVS, that jointly optimizes multiple criteria: (1) conciseness, (2) representativeness of important query-relevant events and (3) chronological soundness. We design a hierarchical attention model that factorizes over three distributions, each collecting evidence from a different modality, followed by a pointer network that selects frames to include in the summary. DeepQAMVS is trained with reinforcement learning, incorporating rewards that capture representativeness, diversity, query-adaptability and temporal coherence. We achieve state-of-the-art results on the MVS1K dataset, with inference time scaling linearly with the number of input video frames.


Dual-Clustering Maximum Entropy with Application to Classification and Word Embedding

AAAI Conferences

Maximum Entropy (ME), as a general-purpose machine learning model, has been successfully applied to various fields such as text mining and natural language processing. It has been used as a classification technique and recently also applied to learn word embedding. ME establishes a distribution of the exponential form over items (classes/words). When training such a model, learning efficiency is guaranteed by globally updating the entire set of model parameters associated with all items at each training instance. This creates a significant computational challenge when the number of items is large. To achieve learning efficiency with affordable computational cost, we propose an approach named Dual-Clustering Maximum Entropy (DCME). Exploiting the primal-dual form of ME, it conducts clustering in the dual space and approximates each dual distribution by the corresponding cluster center. This naturally enables a hybrid online-offline optimization algorithm whose time complexity per instance only scales as the product of the feature/word vector dimensionality and the cluster number. Experimental studies on text classification and word embedding learning demonstrate that DCME effectively strikes a balance between training speed and model quality, substantially outperforming state-of-the-art methods.