Zhai, ChengXiang
User Simulation in the Era of Generative AI: User Modeling, Synthetic Data Generation, and System Evaluation
Balog, Krisztian, Zhai, ChengXiang
User simulation is an emerging interdisciplinary topic with multiple critical applications in the era of Generative AI. It involves creating an intelligent agent that mimics the actions of a human user interacting with an AI system, enabling researchers to model and analyze user behaviour, generate synthetic data for training, and evaluate interactive AI systems in a controlled and reproducible manner. User simulation has profound implications for diverse fields and plays a vital role in the pursuit of Artificial General Intelligence. This paper provides an overview of user simulation, highlighting its key applications, connections to various disciplines, and outlining future research directions to advance this increasingly important technology.
TinyHelen's First Curriculum: Training and Evaluating Tiny Language Models in a Simpler Language Environment
Yang, Ke, Kindratenko, Volodymyr, Zhai, ChengXiang
Training language models (LMs) and their application agents is increasingly costly due to large datasets and models, making test failures difficult to bear. Simplified language environments serve as primordial training and testing grounds, retaining essential commonsense and communication skills but in a more digestible form, potentially enhancing the learning efficiency of LMs, and thus reducing the required model size and data volume for effective training and evaluation. In these simplified language environments, workable strategies for small models, datasets, and agents may be adaptable to larger models, datasets, and agents in complex language environments. To create such environments, we focus on two aspects: i) minimizing language dataset noise and complexity, and ii) preserving the essential text distribution characteristics. Unlike previous methods, we propose a pipeline to refine text data by eliminating noise, minimizing vocabulary, and maintaining genre-specific patterns (e.g., for books, conversation, code, etc.). Implementing this pipeline with large LMs, we have created a leaner suite of LM training and evaluation datasets: 71M Leaner-Pretrain, 7M Leaner-Instruct, Leaner-Glue for assessing linguistic proficiency, and Leaner-Eval for testing instruction-following ability. Our experiments show that leaner pre-training boosts LM learning efficiency. Tiny LMs trained on these datasets outperform those trained on original datasets in instruction-following across different language granularity levels. Moreover, the Leaner-Pretrain dataset's alignment with conventional large LM training sets enables resource-optimized analysis of how learning objectives, model architectures, and training techniques impact performance on language modeling and downstream tasks. Our code and datasets are available at https://github.com/EmpathYang/TinyHelen.git.
Large Language Models for Relevance Judgment in Product Search
Mehrdad, Navid, Mohapatra, Hrushikesh, Bagdouri, Mossaab, Chandran, Prijith, Magnani, Alessandro, Cai, Xunfan, Puthenputhussery, Ajit, Yadav, Sachin, Lee, Tony, Zhai, ChengXiang, Liao, Ciya
High relevance of retrieved and re-ranked items to the search query is the cornerstone of successful product search, yet measuring relevance of items to queries is one of the most challenging tasks in product information retrieval, and quality of product search is highly influenced by the precision and scale of available relevance-labelled data. In this paper, we present an array of techniques for leveraging Large Language Models (LLMs) for automating the relevance judgment of query-item pairs (QIPs) at scale. Using a unique dataset of multi-million QIPs, annotated by human evaluators, we test and optimize hyper parameters for finetuning billion-parameter LLMs with and without Low Rank Adaption (LoRA), as well as various modes of item attribute concatenation and prompting in LLM finetuning, and consider trade offs in item attribute inclusion for quality of relevance predictions. We demonstrate considerable improvement over baselines of prior generations of LLMs, as well as off-the-shelf models, towards relevance annotations on par with the human relevance evaluators. Our findings have immediate implications for the growing field of relevance judgment automation in product search.
Seed-Guided Fine-Grained Entity Typing in Science and Engineering Domains
Zhang, Yu, Zhang, Yunyi, Shen, Yanzhen, Deng, Yu, Popa, Lucian, Shwartz, Larisa, Zhai, ChengXiang, Han, Jiawei
Accurately typing entity mentions from text segments is a fundamental task for various natural language processing applications. Many previous approaches rely on massive human-annotated data to perform entity typing. Nevertheless, collecting such data in highly specialized science and engineering domains (e.g., software engineering and security) can be time-consuming and costly, without mentioning the domain gaps between training and inference data if the model needs to be applied to confidential datasets. In this paper, we study the task of seed-guided fine-grained entity typing in science and engineering domains, which takes the name and a few seed entities for each entity type as the only supervision and aims to classify new entity mentions into both seen and unseen types (i.e., those without seed entities). To solve this problem, we propose SEType which first enriches the weak supervision by finding more entities for each seen type from an unlabeled corpus using the contextualized representations of pre-trained language models. It then matches the enriched entities to unlabeled text to get pseudo-labeled samples and trains a textual entailment model that can make inferences for both seen and unseen types. Extensive experiments on two datasets covering four domains demonstrate the effectiveness of SEType in comparison with various baselines.
Competence-Based Analysis of Language Models
Davies, Adam, Jiang, Jize, Zhai, ChengXiang
Despite the recent success of large, pretrained neural language models (LLMs) on a variety of prompting tasks, these models can be alarmingly brittle to small changes in inputs or application contexts. To better understand such behavior and motivate the design of more robust LLMs, we provide a causal formulation of linguistic competence in the context of LLMs and propose a general framework to study and measure LLM competence. Our framework, CALM (Competence-based Analysis of Language Models), establishes the first quantitative measure of LLM competence, which we study by damaging models' internal representations of various linguistic properties in the course of performing various tasks using causal probing and evaluating models' alignment under these interventions with a given causal model. We also develop a novel approach for performing causal probing interventions using gradient-based adversarial attacks, which can target a broader range of properties and representations than existing techniques. We carry out a case study of CALM using these interventions to analyze BERT and RoBERTa's competence across a variety of lexical inference tasks, showing that the CALM framework and competence metric can be valuable tools for explaining and predicting their behavior across these tasks.
Sparse Modular Activation for Efficient Sequence Modeling
Ren, Liliang, Liu, Yang, Wang, Shuohang, Xu, Yichong, Zhu, Chenguang, Zhai, ChengXiang
Recent hybrid models combining Linear State Space Models (SSMs) with self-attention mechanisms have demonstrated impressive results across a range of sequence modeling tasks. However, current approaches apply attention modules statically and uniformly to all elements in the input sequences, leading to sub-optimal quality-efficiency trade-offs. To address this limitation, we introduce Sparse Modular Activation (SMA), a general mechanism enabling neural networks to sparsely and dynamically activate sub-modules for sequence elements in a differentiable manner. Through allowing each element to skip non-activated sub-modules, SMA reduces computation and memory consumption of neural networks at both training and inference stages. To validate the effectiveness of SMA on sequence modeling, we design a novel neural architecture, SeqBoat, which employs SMA to sparsely activate a Gated Attention Unit (GAU) based on the state representations learned from an SSM. By constraining the GAU to only conduct local attention on the activated inputs, SeqBoat can achieve linear inference complexity with theoretically infinite attention span, and provide substantially better quality-efficiency trade-off than the chunking-based models. With experiments on a wide range of tasks, including long sequence modeling, speech classification and language modeling, SeqBoat brings new state-of-the-art results among hybrid models with linear complexity, and reveals the amount of attention needed for each task through the learned sparse activation patterns. Our code is publicly available at https://github.com/renll/SeqBoat.
Decoding the Silent Majority: Inducing Belief Augmented Social Graph with Large Language Model for Response Forecasting
Sun, Chenkai, Li, Jinning, Fung, Yi R., Chan, Hou Pong, Abdelzaher, Tarek, Zhai, ChengXiang, Ji, Heng
Automatic response forecasting for news media plays a crucial role in enabling content producers to efficiently predict the impact of news releases and prevent unexpected negative outcomes such as social conflict and moral injury. To effectively forecast responses, it is essential to develop measures that leverage the social dynamics and contextual information surrounding individuals, especially in cases where explicit profiles or historical actions of the users are limited (referred to as lurkers). As shown in a previous study, 97% of all tweets are produced by only the most active 25% of users. However, existing approaches have limited exploration of how to best process and utilize these important features. To address this gap, we propose a novel framework, named SocialSense, that leverages a large language model to induce a belief-centered graph on top of an existent social network, along with graph-based propagation to capture social dynamics. We hypothesize that the induced graph that bridges the gap between distant users who share similar beliefs allows the model to effectively capture the response patterns. Our method surpasses existing state-of-the-art in experimental evaluations for both zero-shot and supervised settings, demonstrating its effectiveness in response forecasting. Moreover, the analysis reveals the framework's capability to effectively handle unseen user and lurker scenarios, further highlighting its robustness and practical applicability.
C-PMI: Conditional Pointwise Mutual Information for Turn-level Dialogue Evaluation
Ren, Liliang, Sidhu, Mankeerat, Zeng, Qi, Reddy, Revanth Gangi, Ji, Heng, Zhai, ChengXiang
Existing reference-free turn-level evaluation metrics for chatbots inadequately capture the interaction between the user and the system. Consequently, they often correlate poorly with human evaluations. To address this issue, we propose a novel model-agnostic approach that leverages Conditional Pointwise Mutual Information (C-PMI) to measure the turn-level interaction between the system and the user based on a given evaluation dimension. Experimental results on the widely used FED dialogue evaluation dataset demonstrate that our approach significantly improves the correlation with human judgment compared with existing evaluation systems. By replacing the negative log-likelihood-based scorer with our proposed C-PMI scorer, we achieve a relative 62.6% higher Spearman correlation on average for the FED evaluation metric. Our code is publicly available at https://github.com/renll/C-PMI.
User Simulation for Evaluating Information Access Systems
Balog, Krisztian, Zhai, ChengXiang
Information access systems, such as search engines, recommender systems, and conversational assistants, have become integral to our daily lives as they help us satisfy our information needs. However, evaluating the effectiveness of these systems presents a long-standing and complex scientific challenge. This challenge is rooted in the difficulty of assessing a system's overall effectiveness in assisting users to complete tasks through interactive support, and further exacerbated by the substantial variation in user behaviour and preferences. To address this challenge, user simulation emerges as a promising solution. This book focuses on providing a thorough understanding of user simulation techniques designed specifically for evaluation purposes. We begin with a background of information access system evaluation and explore the diverse applications of user simulation. Subsequently, we systematically review the major research progress in user simulation, covering both general frameworks for designing user simulators, utilizing user simulation for evaluation, and specific models and algorithms for simulating user interactions with search engines, recommender systems, and conversational assistants. Realizing that user simulation is an interdisciplinary research topic, whenever possible, we attempt to establish connections with related fields, including machine learning, dialogue systems, user modeling, and economics. We end the book with a detailed discussion of important future research directions, many of which extend beyond the evaluation of information access systems and are expected to have broader impact on how to evaluate interactive intelligent systems in general.
To Asymmetry and Beyond: Structured Pruning of Sequence to Sequence Models for Improved Inference Efficiency
Campos, Daniel, Zhai, ChengXiang
Sequence-to-sequence language models can be used to produce abstractive summaries which are coherent, relevant, and concise. Still, model sizes can make deployment in latency-sensitive or web-scale implementations difficult. This paper studies the relationship between model size, structured pruning, inference efficiency, and summarization accuracy on widely used summarization datasets. We show that model accuracy is tied to the encoder size while inference efficiency is connected to the decoder. Using asymmetric pruning can lead to nearly 3x improvement in inference latency with ~1 point loss in Rouge-2. Moreover, we find both the average degradation and the role of asymmetry to be consistent across model sizes and variations in datasets.